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Nuclear magnetic resonance (NMR) spectroscopy is an important method which

allows to determine the three-dimensional structure of proteins and other biological

macromolecules. The process is based on the concept of sequence-specific

resonance assignment, where cross-peaks between sequentially neighboring amino

acids are observed in multidimensional NMR spectra and linked to fragments. The

fragments can be uniquely mapped on the sequence, if they become sufficiently long,

which allows the atoms of the residue types to be assigned to their corresponding

chemical shifts. To assign a protein with 100 or more residues, several thousand

signals have to be identified and analyzed. This task is very complex and usually

takes several month of manual work. Up to now the available tools left most of the

complex information management to the operator, who had to take care of plausibility

and consistency by himself.

One of the major achievements of this dissertation is a formal and sufficiently

complete information model. This model is able to describe and capture all

information coming up during the analysis and resonance assignment of NMR

spectra and to ensure consistency. The new software package CARA is a

comprehensive implementation of this information model. It follows a semi-automatic

approach and causes a significant increase of process efficiency and a decrease of

error probability. In contrast to previous solutions like XEASY, whose information

management is primarily based on peaklists, CARA makes use of a central repository

able to manage abstract and semantically interlinked information objects. The

availability of this repository allows CARA to dynamically calculate the needed

projections (e.g. the cross-peaks expected in a concrete spectrum) by means of

incremental inference algorithms. Further concepts have been developed to simulate

the magnetization transfer pathways of NMR experiments, to integrate cross-peaks

and to back-calculate and efficiently store NMR spectra.
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Die Kernresonanzspektroskopie (NMR) ist eine wichtige Methode zur Bestimmung

der dreidimensionalen Struktur von biologischen Makromolekülen im allgemeinen

und Proteinen im speziellen. Der Prozess basiert auf dem Konzept der

sequenzspezifischen Zuordnung von Kernspinresonanzen. Aminosäuren, die in der

Sequenz benachbart sind, manifestieren sich in mehrdimensionalen NMR-Spektren

in der Form sog. Cross-Peaks, die anhand übereinstimmender chemischer

Verschiebungen zu Fragmenten verbunden werden können. Wenn diese eine

hinreichende Länge erreichen, ist deren eindeutige Abbildung auf die Sequenz und

somit die Zuordnung der beobachteten Signale zu den einzelnen Atomen der

Aminosäuren möglich. Die Zuordnung einer Sequenz von hundert oder mehr

Aminosäuren erfordert die Analyse und Identifikation von tausenden von Signalen.

Diese Aufgabe ist sehr komplex und erfordert oft einen mehrmonatigen Einsatz,

verbunden mit viel Handarbeit. Bisherige Werkzeuge überliessen den Grossteil der

komplexen Informationsverwaltung der Verantwortung des Operateurs, der sich

selber um die Plausibilität und Konsistenz der Daten kümmern musste.

Im Rahmen der vorliegenden Dissertation wurde ein formales, hinreichend

vollständiges Informationsmodell entwickelt, das in der Lage ist, sämtliche während

der Analyse und Resonanzzuordnung von NMR-Spektren anfallenden Informationen

aufzunehmen und deren Konsistenz zu gewährleisten. Das neue

Anwendungsprogramm CARA ist eine vollständige Implementation dieses

Informationsmodells und ermöglicht dank eines semi-automatischen Ansatzes eine

erhebliche Steigerung der Prozesseffizienz und Reduktion des Fehlerrisikos. Im

Gegensatz zu bisherigen Anwendungen wie XEASY, deren Informationsverwaltung

primär auf Peaklisten basierte, verwendet CARA ein zentrales Repository, das alle

Informationen in abstrakter und semantisch vernetzter Form verwaltet. Dies erlaubt

die dynamische Berechung der benötigten Projektionen (z.B. Cross-Peaks zu einem

konkreten Spektrum) mittels inkrementeller Inferenzmechanismen. Weitere

Algorithmen ermöglichen die Simulation von Magnetisierungspfaden, sowie die

Integration von Cross-Peaks verbunden mit deren Rückrechnung auf NMR-Spektren.
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To understand the function of biological macromolecules, it is indispensable to know

their structures. Nuclear magnetic resonance (NMR) spectroscopy today is one of the

most important technologies for structure determination. During the last twenty years

methods have been developed which allow structure determination of proteins and

other biological macromolecules [Wüthrich 1995]. The main advantage of using NMR

for structure determination is the possibility to investigate the biological

macromolecule in solution, and thus in its natural and physiological environment. This

is an important complement to the other established method for structure

determination, X-ray crystallography, where the molecules have to be arrayed in the

artifical environment of a crystal. Furthermore, NMR can monitor dynamical aspects

of proteins in solution, e.g. the interaction between a protein and water molecules in

aqueous solutions, which fundamentally revised the picture of proteins as rigid

particles [Otting et al. 1995].

The process of protein structure determination by nuclear magnetic resonance

spectroscopy is based on the concept of sequence-specific resonance assignment

[Wüthrich 1986], where cross-peaks between sequentially neighboring amino acids

are observed in multidimensional NMR spectra, and the resulting fragments are

mapped on the known amino acid sequence. Several different assignment strategies

are available, and the standard approach to obtain complete assignments for

proteins up to about 30 kDa in size involves uniform 13C/15N-labeling and delineation

of heteronuclear scalar couplings with triple resonance experiments [Ikura et al.

1990].

To assign a protein with 100 or more residues, several thousand signals have to be

identified and analyzed. It is alike to solving a huge, multidimensional jigsaw puzzle

with thousands of equal looking parts. Most process steps still have to be executed or

- at least - revised manually, because none of the approaches to fully automate the

process has been successful up to now. Resonance assignment is thus still the

bottleneck of a structure determination project. It usually takes several month (or

even years in hard cases) and has to be carried out by highly qualified personnel.
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The goal of this dissertation was to improve the process of analysis and resonance

assignment of NMR spectra by optimizing its supporting tools, using a semi-

automatic approach. It has been seen, that up to now the available tools left most of

the complexity of analysis and data management up to the operator. The immense

quantity of interlinked information puts a high load upon the cognitive skills. Virtually

each step demanded the operator to manually track the consistency and plausibility

of the whole database. At the same time the tools themselves are complicated to

handle, with the corresponding data models enabling management of only parts of

the information. This forced the user to substitute the missing model parameters by

provisional means sometimes as primitive as paper and pencil.

The following chapters first provide an overview of the process of NMR structure

determination and the problems of current tools. Then a comprehensive model is

described, being able to capture and manage all information obtained which is

needed during spectrum analysis and resonance assignment. It allows automatic

consistency monitoring and inference of new information. This model represents the

result of requirements and process analysis performed by the author at the Institute

for Molecular Biology and Biophysics during four years. Finally an application of this

model to computer aided resonance assignment with the new software package

CARA is presented along with the supporting technology of the software (such as

new spectrum and file formats).

�#� "�& � ���� �
��

This chapter documents the official requirements, as they had been formulated by the

PhD supervisor at the beginning of the project.

The process of nuclear magnetic resonance assignment shall be analyzed with

regard to causes of complexity and inefficiency. The analysis shall incorporate the

resonance assignment software tools currently in use at the group of the PhD

supervisor. The conclusions of the analysis shall lead to an optimization proposal.

The resulting work steps should be conceptually and ergonomically optimized, as

such that the interactive analysis of two and three dimensional spectra will be

supported in an ergonomically reasonable and efficient way. The operator should be
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able to access all important operations with less effort. It should be widely possible to

do without manual update of peaklists or handwritten logbooks.

The optimization therefore strives for the following goals:

1. increase of process performance and efficiency,

2. reduction of error rate and correction effort,

3. reduction of complexity by more optimal management and presentation of

accumulated information,

4. better traceability from structural constraints to spectra,

5. applicability of results also to non-academic use.

The resulting concepts should meet the following requirements:

1. better support of one to three dimensional spectrum analysis,

2. simultaneous presentation of more than one spectrum,

3. adaequate presentation speed for efficient work,

4. better support for 1D slice displays,

5. optimal support for interactive resonance assignment in homonuclear, tripple-

resonance and NOESY applications,

6. automated consistency monitoring of user input,

7. automated peak integration,

8. interactive, visual spectrum phasing,

9. extractability of important measurements (chemical shifts, etc.),

10. executable, documented proof of concept.
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This chapter gives a brief overview of the process of protein structure determination

using NMR technology. The next chapter then concentrates on the analysis and

assignment of NMR spectra, the main focus of this thesis.

Spectrometer PROSA / TopSpin CARA DYANA / CNS

Execute NMR
Experiments

Protein Sample

Pulse Program

Process Time
Domain DataSeries of FIDs

Resonance
AssigmentNMR Spectrum

Constraint
Gathering

Amino Acid Sequence

Spin List

Peak
Integration

Structure
Calculation

Constraint List

Structure Files

Figure 1: Conceptual Overview of Structure Determination Process

Figure 1 shows the whole process as an UML (Unified Modeling Language) Activity

Diagram [Booch et al. 1999]. Activities are represented by lozenge shapes (symbols
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with horizontal top and bottom and convex sides). Like in a flow chart, the flow of

control passes from one activity to the next, starting at the black circle. The lanes

represent the responsible tools in the context of which the activities happen. The

diagram also shows, how information objects (rectangles) flow along the activities.

�#� � , �� � ��
� ��)"�� , - ���� �
��

Before NMR spectroscopy can begin, there is usually a long going phase of sample

preparation (not shown in the figure). The interesting protein has to be produced and

isolated by complex biochemical processes. Various versions of the protein sample

are generated in the course of the process, corresponding to the planned NMR

experiments.

An NMR experiment is primarily specified by its characteristic pulse sequence. In

practice a pulse sequence (together with other configuration information) is kept in a

text file (also called pulse program) and used to setup the spectrometer. A pulse

program is like a musical score, where each note represents a pulse. Pulses have

attributes like carrier frequency, amplitude, phase, shape, starting time and duration,

by which the magnetization transfer along the atoms (i.e. spins) of the molecule is

controlled. The corresponding physical effects are best described by quantum

mechanics [Abragam 1983], which is not the topic of this thesis.

Different types of NMR experiments exist with different characteristics, offering a

wide range of strategic means for resonance assignment and constraint gathering.

There is a strong interrelation between sample preparation and NMR experiment

types, i.e. some experiments require labeling or deuteration of the sample. Labeling

means the replacement of the naturally occurring, but not NMR sensitive C and N

nuclei by their isotopes 15N and 13C.

One can distinguish between three major groups of NMR experiment types, reflecting

their main purpose:

1. Experiments to detect all spins belonging to a single spin system (and therefore

the spin systems themselves).

2. Experiments to detect sequential neighborhood of spin systems (i.e. connected by

covalent bonds).
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3. Experiments to detect close spatial vicinity of arbitrary spins of the molecule (i.e.

not only of adjoining spin systems).

Before the advent of double and triple resonance experiments the last two groups

were the same.

NMR experiments are usually executed at different times during a structure

determination project, depending on the chosen assignment strategy and the

available samples.

�#� !��� ����
� ���� ��$�� ��
�$���

During a multidimensional NMR experiment a signal (i.e. impulse response) is

recorded as a function of several time variables. The signal is first digitized by an

analog/digital converter (usually with a 16 bit word length). The subsequent

processes need multidimensional spectra as input, so there must be a conversion

from the time domain signals to a frequency domain spectrum. The calculation of the

spectra is done using a discrete Fourier transformation for robustness and efficiency

reasons.

Different optimization procedures are applied before, during or after the

transformation to improve the quality of the spectrum, and therefore to ease its

subsequent analysis (e.g. to suppress or reduce artifacts inherent to the experiments

or the discrete Fourier transformation). The most important procedures thereof are

linear prediction, application of suitable window functions, phase optimization,

suppression of signals caused by the solvent, and base line correction.

To save sampling time, the slope of the impulse response is usually not recorded in

full length. Instead a part of the signal is substituted by predicted points using linear

prediction algorithms, which typically extends the digitized time domain data with

additional points. The additional calculated points help to decrease line width and

reduce oscillation effects on the edge of the frequency lines (which are effects of an

abrupt cut off of the decay of the time domain signal). A similar improvement can be

achieved by application of suitable window functions, which compensate for the

finiteness of the recorded time domain signals. If the sampled FID is simply cut off at

time T, this corresponds to a multiplication of the time domain signal by a rectangle
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function of width T and thus a convolution in the frequency domain by sinc( f T ). This

effect can be diminished by selecting a more appropriate function than a rectangle.

The phase optimization is necessary to get spectra with pure absorptive signals. This

is done by application of a constant and linear phase angle to the real and imaginary

part of the original spectrum (either manually with visual feedback or automatically

using programs like PROSA [Güntert et al. 1992]).

The baseline of an NMR spectrum can be distorted for several reasons. There are

methods to reduce this distortions already during the experiment (e.g. by optimizing

phase cycles or use of oversampling). But also linear prediction of time domain

signals or application of corrective functions in the frequency domain are necessary

in practice (as done in PROSA).

A comprehensive description of processing procedures and algorithms can be found

in [Cavanagh et al. 1996].

�#' "���
�
� ��
���� 
� �
�

The goal of resonance assignment is to uniquely associate each nuclear spin of the

sample molecule with a chemical shift. In a 1D spectrum, each frequency line (i.e. the

position of the maximum intensity within the lorentzian line shape, called peak)

represents one or more spins (i.e. atoms). Given a small molecule and a spectrum

with a sufficiently good resolution (i.e. high number of sample points and long

maximum observation time), there is a good chance that individual frequency lines

can be recognized and associated with exactly one spin (or with a group spin such as

rapidly rotating CH3). With increasing molecule size, more and more frequency lines

will fall on the top of each other (or overlap at least). It is also possible for

experimental reasons that expected frequency lines are not visible, or spurious

signals appear. All these effects thus make it nearly impossible in practice to uniquely

associate each frequency line with an individual spin.

Over the years new experiment types have been developed to overcome some of

these problems [Ikura et al. 1990]. An essential progress was the introduction of

correlated spectroscopy (COSY) experiments, in which each signal not only

represents a single atom or atom group (as in 1D spectra), but a specific correlation
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between two or more atoms (i.e. spins). For example in a 2D [1H,1H]-COSY (Aue et

al. 1976) spectrum each peak represents a scalar spin-spin coupling between two

hydrogen atoms being apart up to three covalent bonds. Because of this restriction

the spectrum only shows correlations between spins of the same residue. Nearly all

intraresidual hydrogen spins of an amino acid can be correlated, so that they form

one connected graph (or up to three disconnected graphs in Histidine, Phenylalanine,

Tryptophan and Tyrosine), where each vertex represents a spin (identified by its

chemical shift) and each edge corresponds to a correlation (i.e. cross-peak). Such a

graph is called a spin system. We still expect each spin or chemical group to have a

unique chemical shift position in ideal case.

A spin system has a characteristic topology in a 2D [1H,1H]-COSY spectrum, by

which it can be recognized. Seven different topologies can be uniquely associated

with a residue type (i.e. amino acid) each. It is thus possible to directly identify the

corresponding residue type (and so the spins it contains) by matching the observed

peak pattern with the catalogue of topologies [Wüthrich 1986]. The remaining thirteen

amino acids share three different topologies (thus only an ambiguous identification is

possible by means of pattern matching). Their unambiguous assignment is only

possible if additional information becomes available (i.e. after sequence-specific

assignment).

To vary the number of visible signals in an NMR spectrum, the sample protein is

usually measured both in H2O and D2O solution. In the latter the labile hydrogen

atoms are replaced by deuterium, so that the 1H spectrum only contains signals of

the carbon-bound hydrogen atoms. By comparing the two spectra the nitrogen-bound

hydrogen atoms can be identified.

Another very important type of experiment is the 2D [1H,1H]-NOESY (acronym for

nuclear Overhauser spectroscopy, [Anil-Kumar et al 1980]), which shows a signal for

each pair of hydrogen atoms (i.e. of their spins) with a internuclear distance of less

than 5 Angstrom. The related atoms can belong to arbitrary residues, according to

the 3D structure of protein, usually including sequential neighbors. A NOESY

experiment can thus be used to sequentially connect the spin systems found in

COSY spectra (using the fact that in ideal case a spin is represented by the same

chemical shift in both spectra). The same experiment will also be used for constraint

gathering described in the next chapter.
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The process of homonuclear sequence-specific resonance assignment [Wüthrich

1986] consists of the following steps, orchestrating the experiment types previously

introduced (usually applied to proteins of a molecular weight up to 10 kDa):

1. The spin systems of the residues are identified in D2O solution using (indirect)

through-bond 1H-1H couplings (i.e. COSY type spectra) as far as possible.

2. The spin systems are then completed by further studies in H2O solution using J

couplings with the labile hydrogen spins.

3. Sequentially neighboring spin systems are then identified using sequential

NOESY cross-peaks, and as many spin systems as possible are thus combined

to fragments (i.e. chains corresponding to peptide segments).

4. Sequence-specific assignments are then obtained by matching these fragments

to the (previously known) amino acid sequence. A unique mapping of a fragment

is possible, if it is sufficiently long to uniquely match a peptide segment of the

primary structure of the protein.

If 15N and 13C labeled protein samples are available, other NMR experiments and

assignment strategies can be applied.  For sequential assignment of the protein

backbone a combination of 2D [1H,15N]-HSQC (Mori et al. 1995) and 3D HNCA

(Grzesiek et al. 1992) is widely used. These experiments extend the concept of

COSY and additionally show correlations between spins of different types (i.e. by

scalar through-bond spin-spin couplings). The 2D [1H,15N]-HSQC shows one peak

per individual 15N-1H pair connected by a single covalent bond. Since the backbone

of a protein only contains one 15N spin, this experiment can be used to directly

identify the HN and N chemical shifts of each residue (except for Proline). An HNCA

spectrum shows two peaks for each HN-N pair (i.e. for each residue except the

Prolines), the stronger one usually corresponding to the intraresidual 13Cα and the

weaker one to the sequentially neighboring 13Cα (i.e. 13Cα i-1 in N-terminus direction).

Where as in homonuclear assignment the characteristic topology of the spin systems

is mainly used to match the fragments with the sequence, the heteronuclear

assignment can make use of the fact, that the 13Cα and 13Cβ spins of the amino acids

have a quite characteristic chemical shift distribution [Grzesiek et al. 1991]. It has

been shown, that there is a high probability to find a unique match for fragments of
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length three (or larger) [Grzesiek  et al. 1993]. The process of heteronuclear

backbone assignment therefore consists of the following steps (simplified):

1. Identify the HN-N pair of all possible residues using a 2D [1H,15N]-HSQC spectrum

of the protein.

2. For each HN-N pair identify the 13Cα and 13Cα i-1 using a 3D HNCA spectrum. The

HN-N pairs are used generate out two-dimensional strips along the 13C dimension

of the HNCA, each showing the 13Cα and 13Cα i-1 peak.

3. Find pairs of strips with corresponding 13Cα i-1 and 13Cα and combine as many

strips as possible to fragments (i.e. chains of strips).

4. Sequence-specific assignments are then obtained by matching these fragments

to the (previously known) sequence. A unique mapping of a fragment is possible,

if it is sufficiently long to uniquely match a peptide segment of the primary

structure of the protein (according to the 13C random coil shift distribution).

Several variations and extensions of this procedure exist (e.g. use of additional

spectra like 3D 15N-ed. [1H,1H]-NOESY (Talluri et al. 1996), HNCACB,

CBCA(CO)NH, etc.), but the main concept remains the same and is applicable to

proteins with molecular weights around 20 kDa. The 15N-ed. [1H,1H]-NOESY can be

used to confirm the correctness of the fragments built by CA/CA-1 and CB/CB-1

agreement (or to link fragments when there is no other way, as is the case with

Prolines).

The atoms of the sidechains are usually assigned by simultaneously analyzing COSY

and TOCSY spectra (and also NOESY if necessary). A 2D [1H,1H]-TOCSY (short

form for total correlation spectroscopy, [Braunschweiler et al. 1983]) spectrum shows

a superset of the signals of a COSY spectrum, i.e. several successive 1H-1H relations

over up to three bonds each. The peaks visible in a COSY spectrum are therefore a

subset of the peaks seen in TOCSY. The additional cross-peaks fill up the COSY

topology of the spin system and constitute a characteristic pattern (the so called

TOCSY tower), which repeats at the shift position of each 1H spin of the system, and

is symmetric with respect to the diagonal axis. This pattern can be used to find all

fragments of strips belonging to a single spin system. By comparing the COSY and

TOCSY spectra at the position of a pattern, the peaks remaining in the COSY

spectrum can be directly assigned. This concept is applicable to both homonuclear
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and heteronuclear assignment strategies (the latter using 3D HC(C)H-TOCSY

spectra (Bax et al. 1990), where the towers appear at all strips given by 1H-13C the

pairs of a spin system).

The result of the resonance assignment is a so called spinlist (or atomlist - as it was

called in XEASY - containing an atom with its associated chemical shift in each row).

In chapter 4 a formal model of resonance assignment will be introduced.
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As described before a 2D [1H,1H]-NOESY shows a cross-peak for each pair of

hydrogen atoms (i.e. spins) with a internuclear distance of less than 5 Angstrom. The

intensity of the dipolar coupling between two atoms (and thus of the visible peak)

depends on their distance, according to the formula 6

1
d

cV = , where V is the volume

of the NOESY peak, c is a calibration constant and d is the spatial distance between

the atoms involved (usually used as an upper distance limit during structure

calculation). The spatial structure of a protein can be calculated by a sufficiently

complete set of such distance constraints.

The resonance assignment process aimes to associate each NMR sensitive spin of

the molecule with its chemical shift. With this knowledge the NOESY spectra can now

be interpreted. Each peak corresponds to a distance constraint between the spins

represented by their chemical shift position. The volume of the peak is used to

calculate the upper distance limit of the constraint (according to the given formula

above). The precision of the structure grows with the number of discovered distance

constraints and the accuracy of the peak volume determination.

As seen before the chemical shifts of more than one atoms can fall together (i.e. be

degenerate). A distance constraint can thus become ambiguous. This can partly be

circumvented by use of 3D 13C-ed. [1H,1H]-NOESY spectra (Ikura et al. 1990), in

which the 1H-1H-cross-peaks are dispersed along the 13C dimension (thus reducing

the probability that they overlap). Another way is to directly use the ambiguous

assignments [Nilges et al. 1997] for structure calculation (as it is done in CANDID
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[Herrmann et al. 2002b]), using condition 
6
1

6
−

− �
�

�
�
�

�≥ �
i

idd , where di are the distances

between all atoms involved in the assignment and d is the resulting ambiguous

distance constraint (which is fulfilled if just one of the di fulfills it). Given a reasonably

complete assignment, the corresponding NOESY peaks can even be automatically

found in most cases (as is done in the program ATNOS [Herrmann et al. 2002a]). In

chapter 4.5.1 an algorithm for the automation of peak volume determination is

described.

The result of the process of constraint gathering and peak volume determination is a

constraint list, which contains the upper distance limits of all spatially neighboring

atom pairs.

�#( ���� � �� ���	��� � �����


In the last two sections we saw how distance constraints of a protein structure can be

found by analyzing NMR spectra. Each constraint represents a pair of spins with an

internuclear distance of less than 5 Angstrom. The volumes of the corresponding

NOESY peaks were used to calculate the upper distance limits (which are between 2

and 5 Angstrom). With this information a structure can be calculated by folding the

primary structure of the protein in such a way, that its atoms optimally fulfill the

distance constraints. It is not possible to directly formulate and solve an equation

system due to the complexity of the problem. A solution has to be found by an

optimization procedure instead. Programs like DYANA [Güntert et al. 1997] or CNS

[Brüngera et al. 1998] use the same constraint set to simultaneously calculate a set

of structures (called conformers). Each calculation starts from an initial random

conformation, which is then optimized by simulated annealing, i.e. by simulating the

movement of the atoms under heating condition and their return to an energy

minimum when cooling down while narrowing the upper limits of the given distance

constraints. The quality of the conformers can be assessed by monitoring the

convergence rate and comparing their variance (i.e. the degree of their topological

agreement). The resulting structure is considered to be "optimal", if the deviation of

the conformers is minimal, while only a minimal number of constraints are violated.
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Even if it is not possible to prove that the procedure has found a global minimum and

there was no alternative solution of equal significance, it could be shown in practice

(i.e. by comparing the results with structures already known from crystallography)

that it is possible to determine the correct structure, if enough distance constraints

are available. The quality of the structure is thus directly dependent on the

completeness and correctness of the resonance assignments.
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This chapter gives a brief overview of the currently used procedures of resonance

assignment, constraint gathering and peak volume determination. The discussion

focuses on the program XEASY [Bartels et al. 1995], since it was developed at the

Institute for Molecular Biology and Biophysics, where this research project was

carried out. Most facts also apply to other tools like Sparky [Goddard et al. 2000],

NMRView [Johnson et al. 1994] or Felix [Krezel et al. 2000].

'#� !��4 ������ ���� �!��� ���

All NMR software packages known to the author base their information management

on peak- and spinlists. A peak is a position vector pointing to an intensity maximum

in a given NMR spectrum. The peaklist is the set of all peaks belonging to this

spectrum. Each peak is handled as an individual entity, which is uniquely identified

by a peak number within its peaklist. A peaklist itself is identified by a name which is

usually unique within a project. Each peak can optionally be associated with an

arbitrary label, which is only used for descriptive purposes (i.e. without any semantic

significance).

For each project an spinlist is first generated from a domain specific molecule library

(i.e. a file listing all spins of all amino acids). Each atom of the molecule library is

uniquely identified within its molecule by an ordinal number and a mnemonic (i.e. a

descriptive label). According to the given amino acid sequence, the atoms of each

referenced amino acid are then copied from the library and renumbered to be

uniquely addressable within the spinlist (by atom number). The spinlist has an

independent life cycle from that point (i.e. changes within the library are not

automatically reflected in the spinlist).

Each element of the peak position vector from a peaklist can be associated with an

atom number pointing into the spinlist. This reference is the result of the resonance

assignment process and associates each spin with the resonances observed in the
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spectra. A peak is first picked in a spectrum and later - as soon as this information is

known - assigned to the atoms it represents (one per dimension).

This peaklist based approach has many serious disadvantages leading to

redundancy, ambiguity and disturbing cross-dependencies. It is thus directly

responsible for the additional complexity and the corresponding loss of efficiency.

A peaklist is an entity with an independent life cycle. Since it is associated with a

spectrum, it directly inherits all features of the corresponding spectrum type (which in

turn inherits its features from the originating NMR experiment): the number and spin

type of its dimensions and implicitly the magnetization transfer pathway represented

by its peaks. It is thus not trivial to compare or combine peaklists. Even if two spectra

have the same or a similar spectrum type, usually separate peaklists have to be

managed, because peak positions can slightly differ between spectra. Some

programs at least allow the user to decide on the peak number, so equal peaks can

be recognized by equal numbers (if not, the user has to manage his or her own lists

relating peaks of different peaklists). It becomes even more complex, if a peaklist

corresponds to a subset of another peaklist (as is the case with 3D HNCA/HNCACB

spectra), or only vector components of a peak correspond to vector components of

another peak from another spectrum type (as is usually the case with HSQC/HNCA

spectra) or from the same spectrum (as is the case with all 3D COSY, TOCSY and

NOESY spectra). In these cases the synchronization of peak numbers is no longer

feasible or possible (because one peak can relate to many other peaks) and the user

definitely becomes responsible for the management of the interdependencies. To

reduce the need for synchronization, the user is forced to follow a rigid order of

process steps, where each step is based on a independent copy of the peaklist

established in the previous step (e.g. first pick HSQC, then HNCA, then HNCACB,

and so on).

Another serious problem is the fact, that the assignments of the peak position vector

elements to a spin can become ambiguous in many aspects. On one hand a spin can

be referenced by an arbitrary number of peaks, each at potentially another chemical

shift position. It is often difficult to decide whether the peak is only moved or the

assignment is wrong. In practice a chemical shift tolerance range is used to make

this decision. Usually the mean chemical shift position of all assigned peaks is used

as the reference chemical shift of the atom. This works reasonably well as long as
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the deviation is not to high and there is no mix-up of folded and non-folded peak

positions. This happens quite often, can go unnoticed and may only be discovered by

carefully analyzing the output from structure calculation programs (e.g. DYANA).

On the other hand also the assignments of the dimensions of a single peak can

contradict to other peaks. This happens if an assignment is not properly updated in

all peaks where it occurs (e.g. after a change of a fragment during sequential

assignment).

'#� � � � 4 ���	* ��
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As described in the previous chapter the user is forced to follow a rigid order of

process steps because the synchronization of peaklists is otherwise unfeasible. For

example the backbone assignment usually starts with the analysis of an HSQC

spectrum, where the HN and N chemical shifts of all spin systems (besides Prolines)

can be identified. The resulting peaklist is then converted to a striplist and 3D peaklist

to be used in the HNCA spectrum, where all C chemical shifts initially are at a

constant value. Each strip is then analyzed, moving one peak and picking a second

peak per strip (corresponding to CA and CA-1). If by chance a strip is found which

was not visible in the 2D [1H,15N]-HSQC, two peaklists and one striplist have to be

updated. If the user then wants to simultaneously use a HNCACB spectrum, the

existing HNCA peaklist is copied and extended by the CB and CB-1 peaks. Usually

also a 15N-ed. [1H,1H]-NOESY spectrum is used for confirmation of the fragment

building process, demanding again another peaklist. If there is now a change to one

peak of the HSQC peaklist, this introduces an inconsistency to many peaks in three

other peaklists and to the striplist. The same problems of synchronizing information

occurs during sidechain assignment and structure calculation. It is also important to

note, that the tracing of a change along all peaklists is all but trivial in programs like

XEASY, because peak numbers are the major navigation unit, although they have no

semantic meaning (i.e. the user has to first seek for all peak numbers where a certain

assignment occurs). That's why users typically note down the interesting peak

numbers, to which they came across recently, on a sheet of paper.

To conclude, the later a change occurs the more time expensive it is. A fairly efficient

use of the available tools is only possible, if work can be divided up into sequential,
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autonomous phases, where each phase can be finalized before the next one begins,

i.e. information is handed over like water in a bucket chain. But this completely

contradicts the way spectroscopists usually work. It regularly happens that a decision

can only be taken or has to be revised, if more information is available (e.g. a peak in

a spectrum is often not visible or covered by a cluster and can therefore only be

indirectly deduced by taking into account other assignments).

Instead of the bucket chain approach, an iterative, incremental process model would

be more natural to the user.  This would require a central repository which allows an

incremental, redundancy-free management of information (see chapter 4 and 6).

Because of the highly interlinked nature of this information, the current, table-based

approach, where the user has to manually enter reference numbers, is very

inefficient. The repository should incorporate all information needed to carry out the

process, i.e. there shouldn't be a need for the user to substitute the missing model

dimensions by paper and pencil (or other non-integrated means).
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Many of the available tools challenge the user by numerous input and output files,

sometimes obscuring where the precious results of the work are kept. It is often

difficult to determine, which files belong to a project. XEASY has to handle many file

formats, e.g. spectra, peaklists, sequence, spinlists and the like. Nearly all of these

formats are proprietary and do not adhere to any standards. Users often have to

program their own converters, if they want to reuse the information or cooperate with

other software packages (which can be quite complex if the format cannot be

described by regular expressions). Experience showed that file formats are only

documented in rare cases. Text-based formats can usually be reverse-engineered

(which seems to be the common approach within the NMR community). This is not

always possible with binary formats, e.g. like the XEASY default file format, which is

even hard to understand if the source code is available. The XEASY default file in

principle contains all project information and thus can be used as a "project file"

(although its original purpose is to store the current program state), but the program

is quite stingy with the user when it comes to presentation and management of its

information content (e.g. it is not possible indeed to list or unload spectra, and
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XEASY crashes if more than 14 spectra were loaded). For this reason users usually

work with different default files in parallel (e.g. one for HSQC/HNCA/HNCACB, one

for HC(C)H-TOCSY/13C-ed. [1H,1H]-NOESY, one for NOESY so as not to mix up the

spinlist with the triple resonance peaks when executing the AC command, etc.),

which additionally complicates the synchronization of peaklists and assignments.

Much of the available information remains unused though, because it is not

accessible by the user.

Because the default file is non-transparent, users usually keep information in

redundant peaklists and spinlists. They are then responsible by themselves to

establish a useful naming scheme (to describe the contents of the file, i.e. to avoid

mix-up of peaklists for a spectrum) and to track the file versions. There is always a

danger to inadvertently open or edit the wrong default file, because XEASY opens

and writes to the one in the current directory or in an arbitrary path preset by an

environment variable. The same problems apply to library files, where the user has to

always take special care that the right version is used.

Another common problem is platform independence. Many scientific groups work on

different processor and operating system architectures in parallel. If a binary file

format is dedicated to a certain platform type, its use in such an environment is quite

restricted (e.g. an XEASY default file created on an Irix machine cannot be used on

Linux. The same problem exists for NMR Pipe spectra [Delaglio et al. 1995]). If the

file gets corrupted (e.g. because of program crash), there is usually no way to restore

the information.

A new software package should therefore avoid the use of undocumented,

proprietary, binary file formats. Information should not be dispersed in many files, but

be kept in one single place which is unambiguously identifiably by the user. The

integration of supporting algorithms should be possible on application level, i.e. by

direct memory access or inter-process communication. Data exchange on file level

should be avoided, or at least be done using standard file formats (e.g. on XML

base). It shouldn't be necessary anymore to manually write a configuration file for an

external algorithm, and then again manually enter the results of this algorithm into a

dialog of the original program (as is the case with XEASY when using MAPPER).
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Even if spectroscopists obviously don't appreciate fully automated programs, but

prefer to keep every process aspect under their control, today's programs are

expected to intelligently follow the actions of the user and to make proposals or

complaints where necessary. This is only possible if the program has enough

information about the application domain. It is astonishing to see, how many

information sources are regularly used by spectroscopists, but how few of them are

yet integrated into the available software packages (e.g. the printed figures of all

amino acids, the COSY/TOCSY spin system patterns and the lists with 13C chemical

shift statistics seem still to be a faithful companion of each spectroscopist working

with these programs).

The conceptual model of a program should be comprehensive enough to be able to

absorb all needed information of the problem domain, and to infer new facts and

ensure consistency as the user is acting on it. The user should not be forced to enter

information which could be inferred by the software.

'#( % �������7 �	* ����
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It is already known from other application domains that the usability of a system can

have a tremendous impact on the efficiency of a process. The author was himself

responsible for projects where the efficiency could be raised by at least a factor of

two by only improving the usability (i.e. without any process changes).

Programs like XEASY are an outstanding piece of work. Of course the developers

concentrated on the essential functionality and tried to incorporate every feature into

a single window as far as possible. The advantage of this approach - next to the

reduction of development effort - is the fact, that every function is accessible from

one place. Commands can either be executed by entering a mnemonic or activating

a popup menu. The disadvantage is the equal distribution of interaction cost over all

functions, not considering the frequency of their use (e.g. it requires less steps to

average all chemical shifts than to pick a single peak), and the relatively complex

feature accessibility and interaction gestures (e.g. it takes one command and up to

twenty mouse clicks to display and scale a slice window). Because most things in
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XEASY happen in only one window, the user must always undertake many

configuration steps to use the window in another context (or simultaneously work with

different instances of XEASY, raising the cost of information synchronization).

If the effort to access a feature is too high, users tend to not use it. In XEASY users

couldn't afford to verify each peak position in the slice window, which led to less

precision in peak picking and thus a larger chemical shift deviation (one couldn't even

pick peaks if the slice window was open). Another tedious problem is the placement

of a peak along depth direction (i.e. the selection of the optimal plane). For each

peak the users usually enter a sequence of FP/BP commands to switch between

adjacent planes before they can enter PP and click the mouse at the peak position.

There are many other things which proved to reduce the efficiency and to increase

the error rate of the user. The navigation is costly (only by mnemonic, not by mouse

or cursor keys), many things can only be done by mouse (e.g. a subset of peaks has

to be selected by mouse to create a striplist), there is no undo function and some

functions cannot be reversed (e.g. loading a spectrum), the user has to take care of

implementation details (e.g. the folding concept is based on a spectrum-dependent

peak status and thus the source of many errors), many functions require the user to

memorize parameter values (e.g. the calibration) and finally there is no preview

possibility for the printing function (e.g. the user has to generate and open a

postscript file if she wants to see the effect of a parameter change).

A user interface should be optimized for efficient access to the most likely use cases.

Related use cases should be grouped into dedicated environments, to not overstress

the interface or confuse the users with many unneeded options. Advanced users

should be enabled to extend or customize the environment to their specific needs,

without danger of corrupting the fundamental functions and concepts (as can be the

case in programs written using a scripting language, e.g. such as Sparky [Goddard et

al. 2000]). Also the installation of the tools should be easy (i.e. possible without

assistance of an administrator and without first compiling a lot of source files).
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The volume determination of NOESY peaks is an important step, directly influencing

the quality of the structure. Up to now the volume determination was mostly done
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using a manual approach, because automatic volume determination algorithms

couldn't gain wide acceptance. The manual volume determination using XEASY can

be done e.g. by selecting a rectangle or elipse around a selected peak and then an

algorithm sums up all intensity values within the area. This works quite well with 2D

spectra and non-overlapping peaks (although it takes a while). Even automatic

algorithms could do quite a good job under these conditions. The complexity arises

when peaks are overlapped. The manual decomposition of overlapping peaks is very

difficult and time consuming. Up to now there were no robust algorithms available

which allow a reliable automation of this process. Programs like SPSCAN [Glaser, R.,

www.molebio.uni-jena.de/~rwg/ spscan/] or AUTOPSY [Koradi et al. 1998] make use

of sophisticated decomposition algorithms, which try to assign the sample points of

the spectrum file to the picked peaks. This approach has several limitations. Low

resolution of the spectra can lead to ambiguity and round off problems and therefore

large errors for overlapping peaks. Some algorithms require users to adjust many

parameters with often rather unintuitive semantics. Adjustment of parameters and

assessment of output quality is even more difficult if an algorithm makes use of

random functions. Online optimization of parameters is only possible if calculations

can be done in a reasonably short time (e.g. a few minutes on an average

workstation). Therefore, in practice interactive volume determination methods are still

preferred over automatic algorithms. Apparently there is a fundamental need for a

robust and understandable algorithm which is able to automatically determine the

original i.e. decomposed amplitudes of overlapping peaks in short time with a small

number of intuitive parameters to be adjusted, enabling the spectroscopist to

optimize and verify the outcome and assess its quality. Chapter 4.5.1 describes an

algorithm offering these features.
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The analysis of the current resonance assignment process and its supporting tools

leads to the following overall requirements and recommendations:

1. An appropriate conceptual model is needed. The resonance assignment process

shall no longer be peak centric, but rather spectrum transcendent (i.e. the

resulting information should be abstracted from concrete spectra). The conceptual
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model should provide appropriate degrees of freedom, such that an efficient,

redundancy-free representation and management of the information resulting

from the resonance assignment process is possible.

2. A repository based information management approach is needed. The conceptual

model should be translateable to a domain specific repository, which allows all

information to be managed on one place and in a canonical way. It should be able

to define formal integrity conditions which support automatic referential

consistency checking, allowing for a more optimal incremental and iterative

resonance assignment process. The repository should provide for dynamic

extension possibilities of the model.

3. A semi-automatic approach is needed. All decisions shall be under control by the

operator, but the system shall be able to make proposals and to maintain

consistency. It shouldn't be necessary to enter information, which can be inferred

by the system.

4. An extensible workbench approach is needed. Tools should offer a graphical user

interface adhering to accepted standards and providing state-of-the-art usability

features (e.g. undo). The user interface should be task centric and job specific,

i.e. the operator on one hand only has to care about the features needed for the

current task, and on the other hand has immediate access to the most needed

operations with minimal interaction cost. The workbench shall be extensible, so

the operator can prototype and implement custom algorithms and plugins for

specific needs. The features of the conceptual model, the repository and the

workbench shall be reusable, thus leveraging adaption to new application

domains.

The following chapters describe a conceptual model and a proof of concept which

satisfy the given requirements and recommendations. The scientific contribution of

this thesis consists of the proven conceptual model of the resonance assignment

process and the resulting increase of the process performance and efficiency (as

described in chapter 1.1).
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In this chapter a conceptual model of the problem domain of this thesis is presented.

As we will see it is sufficiently comprehensive to formally describe the process of

analysis and assignment of NMR spectra and its associated information. It is

complete enough to capture the complexity a spectroscopist is confronted with in the

course of assignment, but still lean enough to be comprehensible. This model

represents the result of requirements and process analysis performed by the author

at the Institute for Molecular Biology and Biophysics. Several prototype

implementations and evaluations led to its refinement and optimization. As such it

forms the foundation of the optimized process introduced in chapter 6.

The model differentiates itself from the processing (see chapter 2.2) and structure

calculation (see chapter 2.5) stage in that it doesn't incorporate time domain or

structure information.

This thesis makes use of the Unified Modeling Language (UML), an international

standard maintained by the Object Management Group (OMG), to specify its models.

UML is ubiquitous and well documented [Booch et al. 1999]. It is the result of a long

going community process and incorporates a wealth of experiences made with earlier

specification languages. One of the great achievements of this kind of specification

methodology is the separation of conceptual and technical aspects of a system, i.e. it

can be seen as a formal communication medium between software engineers and

their customers, without the assumption of the latter to be computer scientists. As

such UML has for a long time entered non-software-engineering domains like

business process modeling and reengineering. For a brief overview see page 131.
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Nuclear magnetic resonance spectroscopy is about detecting spins and spin relations

of a molecule and associating their chemical shifts with the atoms (or group of atoms)
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of the molecule. This thesis puts the focus on proteins, which are macromolecules

consisting of linear chains of amino acids as uniform building blocks. A similar

construction principle adheres to DNA and nucleic acids which are also commonly

analyzed using NMR technology.

We generalize the concept of the uniform building blocks by introducing the class

ResidueType (see Figure 2). The name is derived from the primary structure of a

protein which is a chain or sequence of amino acid residues, connected over a

common backbone. A residue can be seen as an "instance" of an amino acid, which

therefore becomes its type.

A ResidueType is identified by a name (e.g. "Alanine"), a shorthand (e.g. "ALA") and

a letter code (e.g. "A"). The shorthand is used to uniquely identify an instance of a

ResidueType within the model.

ResidueType

name: string
shorthand: string
letter: string

Atom

type: AtomType
id: AtomTag
mean, deviation: number

*
AtomGroup

name: string

*

0..1*
*

neighbours

Figure 2: The building blocks of a macromolecule

A ResidueType is a molecule by itself, which can be seen as a network of atoms

connected by covalent bonds. We therefore introduce the class Atom, representing

an instance of an atom type. The type is specified by the attribute type, whose values

are the symbols of the periodic system of elements (value domain AtomType). In

case of amino acids only the symbols H, N, C, S and O are needed. We don't

differentiate between isotopes and their normal forms, because the use of isotopes

for protein labeling is an implementation detail of NMR and only relevant in the

context of sample preparation and measurement (see chapter 2.1).

An Atom within a ResidueType is uniquely identified by its attribute id, which in

practice is the atom type symbol combined with a Greek letter and an optional
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number (e.g. Hα, Cα, Cβ1, Cβ2, etc.). Because of compatibility with other software

packages (e.g. DYANA [Güntert et al. 1997]) we propose to use ASCII [Sebesta

1999] letters and digits exclusively, but to otherwise obey the common nomenclature

for amino acids. The Extended Backus-Naur Form (EBNF [Sebesta 1999]) rule for

the domain AtomTag can therefore be written as follows:

Eq. 1

{ }digitletterAtomTag |::=

The atom network is represented in the model by the unidirectional neighbors

association, which is a set of references from one Atom to many other Atoms of the

same ResidueType (not including itself). The model is consistent if the relation  in Eq.

2 always holds (with A and B being Atoms).

Eq. 2

)()( AneighboursBBneighboursA ∈⇔∈

The optional attributes mean and deviation allow an Atom to be associated with a

random coil chemical shift distributions. They are explained in chapter 4.2.2.

The class AtomGroup is used to put together Atoms with similar properties. We use

AtomGroups to mark Atoms, which usually cannot be uniquely assigned before

structure calculation (i.e. the Hδ and Hε pairs of the aromatic ring of Phenylalanaine).

We don't use AtomGroups to handle chemical groups like CH3 or NH3, where the H

always have the same (i.e. degenerate) chemical shift. Instead the hydrogen atoms

of these chemical groups are directly modeled by a single Atom (e.g. Qβ of Alanine or

Qδ of Isoleucine), corresponding to the structure effectively seen by NMR. XEASY

[Bartels et al. 1995] handles these two cases collectively by pseudo atoms, which

eventually requires a reassignment when the stereo specific assignment becomes

known during structure calculation.

The following diagram shows the application of the classes of Figure 2 for Alanine.
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 : Atom

type = C
id = "CA"

 : Atom

type = N
id = "N"

 : Atom

type = C
id = "CO"

 : Atom

type = H
id = "HA"

 : Atom

type = H
id = "HN"

 : Atom

type = C
id = "CB"

 : Atom

type = H
id = "QB"

neighbours
associations

 : ResidueType
name = "Alanine"
shorthand = "ALA"
letter = "A"

ownership
associations

Figure 3: Object diagram of Alanine

Figure 4 introduces the class SystemType, which allows the optional classification of

a ResidueType. Spin system types are visible as characteristic patterns in a COSY or

TOCSY type spectrum. Using the homonuclear assignment strategy, spin systems

and their respective types are identified in order to find the corresponding

ResidueType (see chapter 6.6).  As an example the Alanine in Figure 3 could be

classified by a SystemType with a name attribute of "A3X".

ResidueType SystemType

id: number
name: string

0..1

classification

Figure 4: Spin system type classification for ResidueTypes

As said before, proteins are macromolecules consisting of a linear sequence of

amino acid residues as uniform building blocks. We therefore introduce the classes

Sequence and Residue to model this primary structure.

A Residue is an instance of a ResidueType (to which it points). Its only attribute is an

arbitrary ordinal number, used to identify and order the Residues in the chain. Each
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Residue knows its sequential neighbors by means of the predecessor and successor

associations, which are redundantly derived from the id attributes. The condition in

Eq. 3 thus always holds (where A and B are Residues).

Eq. 3

)()( AsuccessorBBrpredecessoA =⇔=

The Sequence class is only used for organizational purpose to hold the Residues.

ResidueType

Residue

id: number

1

predecessor successor

0..1 0..1

Sequence
*

Distribution

id: AtomTag
mean, deviation: number

*

Figure 5: A Sequence of Residues

The following object diagram gives an example how to model a peptide chain of five

amino acids. As one can see, ResidueTypes are reusable.

 : Residue

id = 3

 : Sequence

 : ResidueType

name = "Alanine"type
associations

 : ResidueType

name = "Glycine"

 : ResidueType

name = "Proline"

 : Residue

id = 4

 : Residue

id = 5

 : Residue

id = 6

 : Residue

id = 7

predecessor
successor

associations ownership
associations

Figure 6: Object diagram of peptide chain
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Each Residue can have as many Distributions as needed. Each is identified by a

unique id, analogous to the corresponding attribute in Atom. The purpose of

Distribution is to override the random coil distributions defined in the Atoms of the

referenced ResidueType. So each Residue could have its own distribution values,

e.g. to model secondary structure effects. Their use is described in chapter 4.2.2.

Even if the model is designed for macromolecules consisting of uniform building

blocks, it can also handle "monolithic" molecules by assuming a sequence length of

one.

2#� )�� ���
� ��- �
��7 ���� ���
� �
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� �
��

During an NMR experiment the spins of the atoms of the sample molecule are

excited by radio frequency pulses. The spins then begin to radiate themselves

inducing an electric current in a detection coil, which is the primary observation in an

NMR experiment [Wüthrich 1986]. Since the spins are the origin of the observed

signals, we here introduce the class Spin (see Figure 7). The goal of the assignment

process is to find the Spins (i.e. their signals) in an NMR spectrum and to eventually

associate them with their corresponding Atoms.

A Spin is uniquely identified in the model by an ordinal number (attribute id). It has at

least one associated PPM shift. Also the corresponding AtomType is immediately

known from the NMR experiment. In a 1D NMR spectrum virtually every observable

peak (i.e. frequency line) corresponds to one or more Spins. Due to limited resolution

of NMR spectra, structure inherent effects (e.g. circular movements or equal

magnetic shielding of atoms) and the growing size of the molecules studied, there is

an increasing probability that more than one Spins are observed at the same

chemical shift (which is called degenerate chemical shift). Many of these

degeneracies can be resolved using multidimensional NMR experiments, where each

peak represents a relation of the Spins associated with the chemical shifts of the

corresponding dimensions (also called cross-peak). In contrast to earlier approaches

[Bartels et al. 1995] we explicitly refrain from introducing an explicit class for peak

representation here, since it would introduce redundant information into the model

and cause an unneccessary dependence on the spectra concretely used. In chapter
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4.3.1 we show, how this information can be generated using the conceptual models

of residue types and NMR experiments.

Spin

id: number
type: AtomType
shift: ppm

SpinSystem

id: number

predecessor successor

0..1 0..1

SpinLabel

id: AtomTag
offset: number
state: code

0..1*

0..1

SpinAlias

shift: ppm

*
Spectrum

home

1

Fragment

*
<<ordered>>

Figure 7: Spins and their classification

It happens in practice, that a given spin appears at varying chemical shifts in different

spectra. This is often due to unintended variations in pH or temperature. Often one

would like to observe the movement of a spin along a series of spectra (e.g. to track

chemical shift changes during a pH titration as shown in chapter 6.8). Both cases can

be represented by the class SpinAlias, which provides a Spin with an alternative shift

for arbitrary spectra. Spin owns a list of SpinAlias, each referencing a Spectrum (a

Spectrum must be unique within this list).

A Spin will eventually be associated with a certain Atom of a Residue (or a

ResidueType to be precise, see chapter 4.1). This assignment is modeled by a

SpinLabel. It has an id attribute, by which the association is established (by equality

to the id of the Atom). The two remaining attributes are explained later.

Spins related by cross-peaks can be seen as a graph [Wilson 1972]. In a [1H, 1H]-

COSY spectrum, cross-peaks can only be observed between hydrogen spins

separated by up to three covalent bonds. A graph of these Spins can therefore span

not more than one Residue in case of a protein sample. Such a graph is called a spin

system [Wüthrich 1986] and represented by the class SpinSystem in our model.
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SpinSystems are identified by an ordinal number and primarily used to group Spins.

A Spin can belong to exactly one SpinSystem.

Spin system graphs have topologies characteristic for the types of the residues they

span. This feature is used by the homonuclear assignment strategy to identify and

categorize spin systems [Wüthrich 1986]. We already introduced the class

SystemType in chapter 4.1, which represents such a characteristic topology.

Some residue types (e.g. Histidine or Tryptophan) give rise to two or even three

disconnected spin systems representing the same residue. In our model we regard

these to belong to the same disconnected graph and therefore to the same

SpinSystem. We even extend the concept and allow a SpinSystem to also contain

projections of Spins of sequentially neighboring SpinSystems. These are identified by

an offset attribute of SpinLabel unequal to zero.

We now can also explain the third attribute state of SpinLabel. Its values correspond

to the symbols Draft, Assigned and Finalized. The Assigned state means, that the

spectroscopist is sure about the assignment, but the spins are not yet stereo-

specifically assigned. Finalized is the final state of all SpinLabels after the structure

calculation has finished and stereo-specific assignments have also been

accomplished. The model is consistent, if all Assigned and Finalized Spins have

unique SpinLabels within their corresponding SpinSystems (comparing the id and

offset attributes of the SpinLabels of all Spins of the SpinSystem). SpinLabels can be

written as ASCII string using the following EBNF rule:

Eq. 4

[ ]{ }( ){ }[ ]digitdigitletterSpinLabel −+= |||!?::

The attentive reader might have noticed that there is no model element representing

the cross-peak relations between spins. The expected cross-peaks can be calculated

as shown in chapter 4.3 and 4.3.1.

In the course of the assignment procedure the spectroscopist tries to sequentially

connect SpinSystems by cross-peaks detected in NOESY or triple-resonance type

spectra. Two SpinSystems A and B are connected if their corresponding predecessor

and successor attributes point to each other (whereas predecessor points to the N-
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terminus and successor to the C-terminus of a amino acid sequence). The model is

consistent if the condition in Eq. 3  always holds (with A and B being SpinSystems).

Chains of as such connected SpinSystems are also called Fragments (a Fragment is

calculated on demand from SpinSystem chains). A SpinLabel with an offset of -1

therefore identifies a Spin being a projection from the left neighbor SpinSystem of the

Fragment.

ResidueSpinSystem

ResidueType

0..1

assignment

candidates

SystemType

0..1
0..1

0..1

predecessor successor

0..1 0..1
classification

0..1

0..1

model

classification

Figure 8: Sequential assignment

The sequential assignment strategy tries to build Fragments as long as possible and

then to uniquely map them on the Sequence. A SpinSystem is assigned, if it

references a Residue. The model is consistent, if the condition in Eq. 5 always holds

(whereas A and B can either be a pair of SpinSystems or Residues and assuming

Eq. 3 holds). This implies that a Fragment must always be assigned as a whole and

match already assigned Fragments, if they are adjoining.

Eq. 5

))(()()( BassignmentrpredecessoAassignmentBrpredecessoA =⇔=

The following chapters show, how pairs of SpinSystems are matched and how

Fragments are mapped on the Sequence (using SpinLabels, SystemTypes and

ResidueType candidates).

2#�#� 

�
�� ����* � �����)��� * �
� ��- �
�7 ���� �

As shown above a SpinSystem can contain two sorts of Spins: locals and projections

from neighboring SpinSystems. Projection Spins are usually discovered during

sequential backbone assignment using spectra like 3D HNCA [Grzesiek et al. 1992],
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3D HNCACB [Wittekind et al. 1993] and 3D 15N-ed. [1H,1H]-NOESY [Fesik et al.

1988]. For example in a HNCA one can usually recognize two peaks per strip

[Bartels et al. 1995] (i.e. SpinSystem), the stronger representing the local CA Spin

and the weaker representing the CA Spin of the left neighbor SpinSystem (in N-

terminus direction). The latter is a projection and thus labeled as CA-1. As soon as

the Spins are attached with labels (i.e. assigned to an Atom), an algorithm can try to

find pairs of matching SpinSystems and combine them to Fragments. The following

object diagram shows three SpinSystems with seven labeled Spins. The SpinLabels

are displayed as label attributes using the syntax of Eq. 4.

 : SpinSystem

id = 12

 : Spin
id = 30
type = C
shift = 57.5
label = "CA"

predecessor
successor

associations

containment
associations

 : SpinSystem

id = 23

 : Spin
id = 44
type = C
shift = 57.7
label = "CA-1"

 : Spin
id = 43
type = C
shift = 55.2
label = "CA"

 : Spin
id = 35
type = C
shift = 38.8
label = "CB"

 : Spin
id = 45
type = C
shift = 39.1
label = "CB-1"

 : SpinSystem

id = 34

 : Spin
id = 31
type = C
shift = 50.36
label = "CA-1"

 : Spin
id = 24
type = C
shift = 50.5
label = "CA"

Figure 9: Matching SpinSystems using SpinLabels

SpinLabels provide the matching algorithm with more "intelligence" than earlier

approaches based on peak comments, intensities and chemical shifts only (that's

why they're also called smart spin labels). In Figure 9 it could for example find a

match between Spins 44 and 30, 45 and 35 as well as 31 and 24, because they have

equal AtomTypes, AtomTags and reasonably close chemical shifts. Due to the -1
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offset the algorithm was able to arrange the SpinSystems as shown. The concept

also works with larger inter-residual offsets usually seen in NOESY spectra.

The match is based on the agreement of the compared chemical shifts, weighted by

the number of Spins involved. For the agreement we use a simple triangle function

(Eq. 6), which seems to give the best efficiency/effectiveness tradeoff. More

computation intensive functions also used in literature [Herrmann et al. 2002a] didn't

render a higher decision quality.

Eq. 6

�
	

�



�
≤−

−
−=

otherwise

ifagreement tolref
tol

ref

tolref

0

1),,( ωωω
ω

ωω
ωωω

In Eq. 6 ωref is the chemical shift of the reference Spin; ωtol is an arbitrary tolerance,

individually adjustable for each AtomType by the user. In practice it is a good

strategy to start with large ωtol in the beginning of a backbone assignment (e.g. 0.5

PPM for 1H) and to incrementally reduce it as more Spins are assigned (i.e. attached

by a label).

Algorithm 1 calculates the fitness value of the match of the two SpinSystems

(parameters refSystem and testSystem) by summing up the agreement of all Spins

having an equal AtomTag and an appropriate offset. The parameter strict controls

whether the match should be dismissed if one of the Spins didn't contribute to the

fitness value. The multiplication of sum and weight increases the significance of

many matching Spins with low fit compared to a single match with a high fit, and thus

imitates the assessment manually done by a spectroscopist.

Using this algorithm, a list of all SpinSystems matching a reference SpinSystems

ordered in decreasing order of the calculated fitness can be presented to the user

(e.g. the list of all possible predecessors if offset = -1).
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Algorithm 1: Agreement between two SpinSystems
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Variations of Algorithm 1 exist to match all Spins independently of their SpinLabels

(only matching their AtomTypes), or to only use one or more reference Spins instead

of a complete SpinSystem. An application of these algorithms is described in chapter

6.4.

Instead of only matching one reference SpinSystem, a complete cross correlation of

all SpinSystems can be calculated. The correlation matrix could then be used to build

all possible Fragments and to assess their qualities by mapping them on the

Sequence (see the following chapter).
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Sequential assignment using triple-resonance experiments can make use of the fact,

that the CA and CB of amino acids have quite a characteristic chemical shift

distribution along all studied proteins [Grzesiek et al. 1991]. Atom and Distribution

therefore have an optional attribute pair mean and deviation, with which one can

realize a fuzzy pattern matching between SpinSystem and Residue. The algorithm

tries to find a mean/deviation pair for every local Spin of the selected SpinSystem. It

uses the id attribute of the SpinLabel (assuming it is available) to first search the

Distributions of the Residue and then, if not yet successful, the Atoms of the

referenced ResidueType (see chapter 4.1). If the search was successful, the

agreement between the Spin and the Distribution can be calculated. This can either

be done using functions known from error estimation theory (as done in the program

MAPPER [Güntert et al. 2000]), where the total error is calculated and minimized, or

with the concepts of fuzzy logic [Rouvray et al. 1997] in mind. We decided in favor for

the latter for performance reasons and because logical operations can be

consistently applied. The agreement is expressed by either fuzzy TRUE or FALSE or

an arbitrary value between. Eq. 7 shows an obvious function, but Eq. 6 has shown to

be precise enough and well performing (using ωmean = ωref and ωdev = ωtol from page

35).

Eq. 7

2)(
2
1

),,( dev

mean

eagreement devmean
ω
ωω

ωωω
−−

=

Algorithm 2 is used to calculate the fitness of the match between a SpinSystem and a

Residue (parameters system and residue) by summing up the agreement between all

Spins and the corresponding Distribution (found by equality of AtomTag). The

parameter strict controls whether the match should be dismissed if one of the Spins

didn't contribute to the fitness value. A Spin for which no Distribution can be found

doesn't influence the result.

Algorithm 2 as shown is a bit simplified. In the current implementation only Spins with

Assigned or Finalized SpinLabels are used for comparison, and already assigned

Residues can optionally be excluded. Furthermore the match will be discarded, if the

SpinSystem has a non-empty list of assignment candidates, which doesn't contain
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the referenced ResidueType, or if the SpinSystem as well as the ResidueType both

have an attached, but different SystemType.

Algorithm 2: Agreement between a SpinSystem and a Residue
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A given Fragment can then be matched to all possible positions on a Sequence. This

is efficiently done by constructing an n x m adjacency matrix containing all n

SpinSystems of the Fragment as rows and all m Residues of the Sequence as

columns, and then applying Algorithm 2 to each cell being covered. We can then

calculate the total fitness Fk of each position k of the Fragment on the Sequence,

where k runs from 1 to m - n. The cells contain the sum si,k and the weight wi,k

calculated with Algorithm 2). The spectroscopist can either choose Eq. 8 (which

could be seen as a fuzzy OR-relation between the elements of the Fragment) or Eq.

9 (in the sense of a fuzzy AND-relation) to calculate Fk. The value wk is the maximum
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wi,k+i with i running from 1 to n. The division by wk again shall imitate the way a

spectroscopist would manually assess the overall quality of a match k.

Eq. 8
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Eq. 9
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All m - n matches can then be arranged in descending order. Usually only matches

with Fk > T are kept (T being an adjustable threshold).
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An NMR spectrum is the result of an NMR experiment (see chapter 2.1 and 2.2). It

can be seen as a n-dimensional matrix with each cell containing an intensity value

[Eccles et al. 1991]. Cells are indexed by ordinal numbers, each representing a PPM

position.

Spectrum

id: number
name: string
filePath: string

SpectrumType

0..1

type

EasySpectrum BrukerSpectrum CaraSpectrum

Scale

dimension: number
type: AtomType
from, to: ppm
count: number
folding: code
rfFreq: number

1...*

<<ordered>>

Figure 10: Model of an NMR spectrum

We introduce the two classes Spectrum and Scale (Figure 10) to model NMR spectra

and their dimensions. A Spectrum owns as many Scales as it has dimensions. Each
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Scale is uniquely identified by its dimension attribute (values 1 to number of

dimensions).  The attributes from and to define the PPM value at index 1 and index

count respectively, where count is the number of cells along the dimension. The

folding attribute can receive one of the symbols Unfolded, Translated (e.g. for RSH)

and Mirrored (e.g. for TPPI). It controls how the dimension is presented outside its

original PPM range. The rfFreq contains the carrier frequency of the spectrometer for

the dimension. It can be used to convert PPM to Hz and vice versa. Each Scale is

associated with an AtomType indicating the type of nuclei causing the signals

observable along the dimension.

A Spectrum is a generic concept used to shield the model from the implementation

details of specific spectrum formats (shown as sub-classes). Spectra are usually kept

in files, accessible by the attribute filePath. Within the model a Spectrum is uniquely

identified by an ordinal number. The features of an NMR spectrum are determined by

the type of NMR experiment by which it was generated. This type is represented in

the model by the class SpectrumType (see Figure 11). If a Spectrum references a

SpectrumType, a wide range of algorithms can be applied to it (e.g. path simulation

and peak inference, see below).

SpectrumType

name: string

Dimension

id: number
name: string
type: AtomType

SpinLabel

*expectedLabels

1...*

<<ordered>>

ProcedureStep

id: number
name: string
target: AtomType
hopCount: number
repeat: boolean
mean, deviation: number
dimension: number

*
<<ordered>>

procedure

Figure 11: Classification of NMR spectra

SpectrumType is identified by a unique name (e.g. "HNCA" or "HSQC"). It offers two

complementary concepts to describe the features of an NMR experiment: explicit
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specification of expected SpinLabels or of the magnetization procedure (to perform

peak inference, see below).

Spectrum and SpectrumType, and therefore Scale and Dimension form

complementary concepts, in that the former can be seen as an instance of the latter.

Dimension has the same id and type attributes like Scale. The name attribute is only

decorative.

Each Dimension can be associated with an explicit set of expected SpinLabels. This

is particularly important for the specification of SpectrumTypes used for the

sequential assignment, i.e. before the ResidueType of a SpinSystem is known. The

concept of SpinLabels was already introduced in chapter 4.2. The following figure

shows a HNCA SpectrumType as an example. It can immediately be seen that

Dimensions 1 and 3 have unique SpinLabels. The model can thus automatically infer,

which Dimensions (i.e. which Spins) represent independent SpinSystems and should

be used as strip anchors. In the example the model would present all SpinSystems

containing "HN" and "N" labeled Spins as strips. The strips would then automatically

accept and display the "CA" and "CA-1" Spins of the corresponding SpinSystem. In

XEASY [Bartels et al. 1995] this had to be done manually (involving two different

peaklists) because of the lack of structured information about the SpectrumType.

Chapter 6.4 shows an application of this concept.
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 : SpectrumType

name = "HNCA"

 : Dimension
id = 1
type = H
name = "HN"

ownership
associations

 : Dimension
id = 3
type = N

 : Dimension
id = 2
type = C

 : SpinLabel
id = "HN"
offset = 0
state = Finalized

 : SpinLabel
id = "CA"
offset = 0
state = Assigned

 : SpinLabel
id = "CA"
offset = -1
state = Assigned

 : SpinLabel
id = "N"
offset = 0
state = Finalized

expectedLabels
associations

Figure 12: Object diagram of an HNCA SpectrumType

Additionally or alternatively to the explicit specification of expected SpinLabels, one

can specify a magnetization transfer procedure for a SpectrumType, represented by

the class ProcedureStep in Figure 11. The pulse sequence applied to a sample

during an NMR experiment can be subdivided into consecutive periods.

Figure 13: Pulse sequence of an HNCA experiment



2'

 2000-2005 Rochus Keller

Figure 13 shows a typical pulse sequence of a triple-resonance HNCA experiment

[Grzesiek et al. 1992]. The following periods can be recognized:

Table 1: The periods of an HNCA experiment

a → b 1H, 15N-INEPT

b → c 15N-Evolution

c → d 15N, 13Cα-INEPT

d → e 13Cα-Evolution

e → f 13Cα, 15N-INEPT

f → g 15N, 1H-INEPT

g → h 1H-Acquisition

The periods shown in Table 1 control the magnetization transfer between the spins of

the molecule. Each execution of the pulse sequence running through all periods

renders the FID t3 measured on the 1H channel of the spectrometer which is then

digitized and recorded. The two additional dimensions result from systematic

incrementation of the two evolution periods t1 and t2 as shown in Figure 13 (i.e. from

a cross product of all 15N and 13C evolution periods). In addition the phases of the

pulses and receiver are varied systematically during several repetitions (scans) of

each t1, t2 pair to select a specific magnetization transfer pathway and to reject

alternative pathways. Figure 14 shows how the magnetization transfer pathway and

labeling periods act in concert to correlate the frequencies of specific spins in a

protein backbone fragment. Each step in the pathway defined in Table 1 is indicated

as a labeled arrow in Figure 14.

N CA

HN

R

COCA

R

abfg
cd

cd

ef
ef

ii-1

Figure 14: Effect of an HNCA to the backbone
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The carrier frequency and excitation range of the 13C pulses during the 15N, 13Cα-

INEPT (c → d) are chosen such that CO is not excited and therefore not visible in the

spectrum. The CA are expected to have a chemical shift in the range of 30 to 50

PPM, whereas the chemical shift of CO will be around 178 PPM. It can also be seen

that a → b and f → g as well as c → d and e → f are symmetrical operations; the

inverse operations are only necessary for experimental implementation reasons and

can be neglected in the model. This magnetization procedure is represented in our

model by means of the class ProcedureStep, which is as an abstraction of a specific

operation like INEPT.  Figure 15 shows an example of such a procedure for an

HNCA SpectrumType.

 : SpectrumType

name = "HNCA"

 : ProcedureStep
id = 3
name = "INEPT cd"
target = C
hopCount = 2
repeat = false
mean = 53
deviation = 15
dimension = 2

ownership
associations

 : ProcedureStep
id = 1
name = "H"
target = H
repeat = false
dimension = 1

 : ProcedureStep
id = 2
name = "INEPT ab"
target = N
hopCount = 1
repeat = false
dimension = 3

Figure 15: Magnetization transfer procedure of HNCA

A ProcedureStep is uniquely identified by an ordinal number, which also determines

the execution order. The name attribute is for documentation purpose only. Each

ProcedureStep can be seen as a binary relation P on the set of all atoms A of a given

molecule. P is a subset of A x A and relates each element (i.e. Atom) x of its domain

D with an element y of its codomain C (more formally written as ( ) xPyPyx ⇔∈, ,

where ( )( ){ }PyxyxD ∈∃= ,;  and ( )( ){ }PyxxyC ∈∃= ,; ). It is defined by the attributes of

ProcedureStep and can be implemented using a graph search algorithm [Wilson

1972], marking each node when it was visited for the first time. The optional

attributes target, mean and deviation can restrict the type and chemical shift of the

Atoms in the codomain (where the restriction only applies if the attributes are
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available). The attribute hopCount restricts the number of covalent bonds separating

an element x from an element y. E.g. if the hopCount is 3 only Atoms y which can be

reached from Atom x by stepping through a maximum of three intervening bonds are

selected. A hopCount of -1 has the special meaning that all Atoms of the given type

in the ResidueType are selected (which is used for example to simulate the effect of

a NOESY, i.e. to select all H Atoms in a ResidueType independent of the number of

bonds separating them from the starting Atom x). If repeat = true, the relation is

recursively applied to itself until all elements of the domain have been visited (which

is what happens in a TOCSY step). If a dimension attribute is specified, the

ProcedureStep applies to a Dimension of the SpectrumType, which results in

detected signals. A magnetization transfer procedure can therefore contain steps

which are not directly visible in a spectrum (as is the case e.g. in (H)CCH-TOCSY).

In chapter 5 we show that the concept presented here is comprehensive enough to

model most commonly used types of NMR experiments (except projected

experiments, which have to be substituted by their non-projected counterparts).
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In this chapter we show how the concepts of SpectrumType and ProcedureStep can

be used to simulate the magnetization transfer pathways of NMR spectra, when

applied to a given ResidueType. The execution of an NMR spectrum is represented

in the model by the class Experiment (Figure 16). It references the ResidueType and

SpectrumType with which it was executed. To simulate all pathways of a complete

protein we therefore need as many Experiments as the sequence contains different

ResidueTypes (e.g. tree for a peptide shown in Figure 6).
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Experiment
ResidueType

SpectrumType

1

1

Pathway

array of SpinLabel

* simulationResult

Figure 16: Magnetization Transfer Pathway table of an Experiment

The results of the simulation are kept in the class Pathway, each containing a trace

(i.e. projection) of an observed magnetization transfer path.

The set of all magnetization transfer pathways along a molecule caused by an NMR

experiment can be represented by a tree. The root of the tree corresponds to the

start of the experiment (see Figure 19). Each edge connecting the nodes x and y is

an element of the relation P, where ( ) xPyPyx ⇔∈, . In the previous chapter we

claimed the binary relation P to correspond to a ProcedureStep, which thus

represents all edges connecting two levels of the tree (where level i - 1 is the domain

and level i the codomain of relation Pi, taking the root as level 0). A single

magnetization transfer pathway is a chain of nodes starting at a node of level 1 and

ending at a leaf node of the tree. Only chains of length n are considered to belong to

the result of the simulation, where n is the number of ProcedureSteps of the

SpectrumType.  All chains are then combined into a table with n columns, each chain

forming a separate row. The chains are thereby aggregated, i.e. only one of a series

of equal chains (equal regarding the AtomTags of the nodes) is kept as a row, so all

rows of the table are distinct. The columns are then reordered according to the

dimension attribute of the ProcedureStep, removing the n - d columns of

ProcedureSteps with an empty dimension attibute. The columns of the remaining

table thus represent the Dimensions of the SpectrumType. A row of this table is

regarded as a projection of a magnetization path and kept in the class Pathway. This

transformation of a tree into a table is called a denormalization.

If the ResidueType is not known or the SpectrumType doesn't contain

ProcedureSteps, the denormalization table can also be built from a cross product of
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all SpinLabels of all Dimensions, which is useful during sequential assignment.

Alternatively one can designate a ResidueType of the library to be used as a generic

spin system type, i.e. to do the pathway simulation for a SpinSystem as long as its

sequential assignment is not known.

In the following simple example we will do the simulation of a (H)CCH-COSY

experiment for a Serine.

 : SpectrumType

name = "(H)CCH-COSY"

 : ProcedureStep
id = 3
name = "CC COSY"
target = C
hopCount = 1
repeat = false
mean = 40
deviation = 35
dimension = 3

 : ProcedureStep
id = 1
name = "H"
target = H

 : ProcedureStep
id = 2
name = "HC INEPT"
target = C
hopCount = 1
repeat = false
mean = 40
deviation = 35
dimension = 2

 : ProcedureStep
id = 4
name = "CH INEPT"
target = H
hopCount = 1
repeat = false
dimension = 1

Figure 17: Object diagram of a (H)CCH-COSY SpectrumType

The displayed SpectrumType (Figure 17) has three Dimensions and four

ProcedureSteps. Each step can potentially give rise to one Dimension. However not

every period of an NMR experiment is detected (e.g. COSY or INEPT steps which

only transfer magnetization). This is the case for the (H)CCH-COSY experiment

where the first H is not detected and thus the first step of the corresponding

procedure does not have an associated Dimension (i.e. it has no dimension

attribute). A SpectrumType is consistent, if the number d of Dimensions is less or

equal to the number of ProcedureSteps and exactly d steps disjointly reference a

Dimension. Note that in our example all hopCounts are equal to one, and that the

middle two steps restrict the PPM range of the codomain. In Figure 18, the pathways

resulting from the procedure of Figure 17 are displayed. In the following the effect of

each step is explained.
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CON CA

HN HA

CB HB3HB2

OG

HG

44

4

3
3

3

3

1

1

1

1 1

2

22

Figure 18: Application of an (H)CCH-COSY to a Serine

1. The domain of the first step corresponds to all Atoms of the Serine. Since target

equals to H, the codomain of the relation are all Atoms with type = H.

2. The codomain of the first step becomes the candidate domain of the second. In

the second step we are looking for all Atoms within one bond distance, whose

type equals to C and mean is in the range of 40 ± 35 PPM. HG and HN don't

meet these conditions and their path therefore breaks off.

3. The conditions of step three are identical to step two. CA and CB form the

candidate domain for this step. Reflection is allowed, so CA and CB can relate to

themselves. However the relation of CA and CO is not possible due to the

restriction of the PPM range (i.e. the mean of CO is around 170 PPM).

4. This step tries to relate CA and CB to all Atoms with type = H. Due to the bond

distance restriction (hopCount of one) this is only possible with HA, HB2 and HB3.

If the step had defined a hopCount of two, then HN and HG would belong to the

codomain.
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Figure 19 shows the corresponding state tree representing all discovered paths

through the molecule. The algorithm now prunes all branches of the tree with length

smaller than four. After that, a denormalization step follows, where all remaining

branches are aggregated into tabular form.

HA

HB2/3

HG

HN

CA

CB

CA HA

CB HB2/3

Figure 19: State tree of the experiment

The first column is removed because the first ProcedureStep does not have a

dimension attribute. The columns of this table are then rearranged in the order given

by the dimension attributes of Figure 17.

Table 2: Experiment pathway table

Dim. 1 Dim. 2 Dim. 3
HA CA CA

HB2 CA CB
HB3 CA CB
HB2 CB CB
HB3 CB CB
HA CB CA

Table 2 shows the result of the algorithm. Each row is a potential (i.e. expected)

cross-peak, visible on spectra of the given SpectrumType. If such a Spectrum should

be displayed, all SpinSystems of the model are searched for Spins with a SpinLabel

corresponding to the AtomTags of each column of Pathway. We call this peak
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inference. If the hopCount of a dimension was -1, all Spins with an AtomType

corresponding to the Dimension would be selected instead (to model the effect of

NOESY steps). Figure 20 shows the object diagram of the Experiment corresponding

to Table 2.

SpinSystem 12 of Figure 9 contains the two Spins id=30 and id=35 with labels CA

and CB. If the spectroscopist added another Spin id = 50 with a HA label to this

SpinSystem, it would be presented with two cross-peaks on the (H)CCH-COSY,

which are defined by the two Spin triples { 50, 30, 30 } and { 50, 35, 30 }

(corresponding to the first and last row of Table 2). Applications of this algorithm are

shown in the chapters 6.5 and 6.6.

 : SpectrumType

name = "(H)CCH-COSY"

 : Pathway

[ "HA", "CA", "CA" ]

 : ResidueType

name = "Serine"

 : Experiment

 : Pathway

[ "HB2", "CA", "CB" ]

 : Pathway

[ "HB3", "CA", "CB" ]

 : Pathway

[ "HB2", "CB", "CB" ]

 : Pathway

[ "HB3", "CB", "CB" ]

 : Pathway

[ "HA", "CB", "CA" ]

simulationResult
associations

Figure 20: Object diagram of the resulting pathway table

The approach shown evidently offers several major improvements compared to the

legacy concept of peaklists. It is no longer necessary to store redundant information

and to manage and synchronize peaklists. A peak is nothing but a position vector,

unaware of the semantics of the problem domain. Its dimensions are largely

redundant, causing the project to become inconsistent if not all vector elements are

updated accordingly (e.g. if a "TOCSY tower" moves). This cannot happen anymore

with our approach, because Spins are independent, reusable objects, which are
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dynamically arranged in tuples to be presented as cross-peaks (e.g. the two tuples

above would be immediately up to date if Spin 30 had changed position). Arbitrary

SpectrumTypes and ResidueTypes can be added to the model later without

invalidating the consistency or the implementation.

The examples shown in this section applied the pathway simulation to a single

ResidueType only. But the model also incorporates informations about which Atoms

of the ResidueTypes are responsible to link them to peptide chains. The pathway

simulation can thus also cover the neighboring ResidueTypes. In the current

implementation of the model the simulation only covers the left and right neighbors.

This model has the additional advantage that it avoids the need to peak pick new

peaklists for spectra which are recorded during later stages of a project, so that only

the new non-redundant information needs to be analysed.

2#2 )�� ���
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In chapter 2.4 constraint gathering and peak volume determination were presented

as the final step before structure calculation. In chapter 4.2 a model for Spin and

SpinSystem assignment was introduced, focusing on intra-residual and short-range

relations between Spins. When the assignment has finished, each Spin is assigned

to an Atom of the Sequence, i.e. each chemical shift position on the axis of an NMR

spectrum can be explained (ideally speaking). The goal of constraint gathering is to

find medium- and long-range relations between arbitrary Spins. Because all Spins

are addressable by their Residue membership, one could in principle use the already

introduced SpinLabels to also describe a long-range relation (i.e. by adding a

redundant projection Spin and labeling it with an offset pointing to the sequence

position of the original). But on the one hand a relative addressing scheme for

arbitrary relations seems to be unpractical to handle. On the other hand some

important requirements could not be properly met by this approach (e.g. associating

a distance constraint with a volume, see below). We therefore introduce the class

SpinLink to model such a relationship (see Figure 21).
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Spin

SpinLink LinkAlias

amplitude: number
volume: number
visible: boolean

* Spectrum
home

1

left right1 1

*

links

Figure 21: Relations between arbitrary Spins

A SpinLink is an independent entity referencing the two Spins it relates. Each Spin

has a list of the SpinLinks it is referenced by (either as left or right, see Figure 22).

Each peak on a 2D [1H,1H]-NOESY type spectrum represents a distance constraint

between the Spins at the particular chemical shift positions of the peak. Furthermore

the upper distance limit of this constraint is a function of the intensity volume of the

peak . The class LinkAlias is used to maintain this information. Since an intensity is a

property of the specific Spectrum it is observed, SpinLink owns a LinkAlias for each

of them. The attribute amplitude holds the intensity directly measured at the

corresponding peak position, whereas the volume is the result of an either manual or

automatic volume determination of the intensity curve covering the area of the peak

(considering overlap). Chapter 4.5.1 shows an effective algorithm for automatic

volume determination.
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 : Spin
id = 35
label = "CB"

 : SpinLink

left, right
associations

 : Spin
id = 30
label = "CA"

 : Spin
id = 50
label = "HA"

 : SpinLink

links
associations

Figure 22: Object diagram of SpinLinks

One could argue that a SpinLink is identical to the concept of a peak, but this is not

true. A peak is nothing more than a PPM position (a chemical shift vector). As we

have seen in chapter 4.3.1 a peak represents a trace along a magnetization transfer

pathway, i.e. it relates the Spins at the chemical shift positions. If we only work with

2D NMR experiments, a peak contains enough information to represent the trace

(provided that there is no chemical shift degeneracy), because there is only one

possibility to connect two elements. But if we analyze three or more dimensional

spectra, a peak becomes ambiguous, i.e. there are n possibilities to connect the n

elements of a peak by a path with length n - 1. This ambiguity doesn't apply to

SpinLinks, because they directly represent the path.

SpinLinks are complementary to projection Spins (having SpinLabels with offset

unequal zero), i.e. they can be converted to each other. The concept has not only

proved to be useful for constraint gathering, but also for the homonuclear assignment

strategy. For this purpose LinkAlias has the attribute visible to represent the feature,

that only a subset of the cross-peaks of a TOCSY spectrum are visible in a COSY

spectrum. An application of these concepts can be found in chapter 6.6.
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Peaklists are a legacy concept integrated into the model for compatibility with other

applications (e.g. XEASY [Bartels et al. 1995], DYANA [Güntert et al. 1997], etc.).

They are represented in the model by the class PeakList (see Figure 23). The class

Peak is inspired by the format defined by EASY [Eccles et al. 1991] and contains all

common attributes like id, label, color and assignment (without further semantic

meaning).

In contrast to previous applications the model allows a Peak to have different

positions in different spectra (analogous to SpinAlias introduced in chapter 4.2),

represented by PeakAlias. It has additional attributes to capture the amplitude

measured and the volume calculated (see below).

PeakList

id: number
name: string

Spectrum

1

Peak

id: number
label: string
color: number
assignment: array of number

*

PeakAlias

position: PpmPoint
amplitude: number
volume: number

*

home

batchList & home

*

PeakModel

id: number
name: string
mathModel: code
tolerance: array of ppm
width: array of ppm
gain: array of ppm
balance: array of ppm

1...*

1
model

models & default
<<ordered>>

Figure 23: Peaks, PeakLists and PeakModels

The automatic peak volume determination algorithm introduced in the next chapter is

supported by the class PeakModel, by which each PeakAlias can be extended with

information about the mathematical model of the peak. PeakModel is intentionally
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associated with the alias and not the peak itself. It is thus possible to follow a Peak

along a series of spectra.

A PeakList is generally associated with the Spectrum it was created for (defined by

the home association). But it is also possible to associate it with an ordered series of

spectra (the batchList association). An application of this feature is described in

chapter 6.8).

It is at any time possible to generate PeakLists from Spins and SpinSystems (i.e. the

concepts introduced in the chapters 4.2, 4.3 and 4.4) in order to pass information to

other applications.
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An NMR spectrum essentially consists of regular and artifact peaks superimposed by

random noise. Even if the artifact peaks sometimes look like regular peaks, they do

not belong to the result set expected by the NMR experiment performed. All regular

peaks of a NOESY spectrum ideally have similar properties, e.g. peak shape, relative

line width and noise floor. In practice these properties will slightly vary for different

regions of the spectrum. We assume that all regular peaks of a spectrum can be

described by a single, uniform mathematical model (e.g. a Gauss or Lorentz

function). We regard a spectrum to be a superposition of noise and instances of this

uniform model, one instance for each regular peak. The current model neglects

artifact peaks and regional variations of properties.

Figure 24 schematically shows a one-dimensional slice of an NMR spectrum

containing two peaks at positions ∆1 and ∆2 with the observed amplitudes A1 and A2.
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Figure 24: Slice through a schematic 1D NMR spectrum showing two

overlapping peaks

The smaller peak ∆2 partially overlaps with the larger one and is therefore only

observable with a superposed amplitude A2 (hatched line). In contrast to that peak ∆1

is observable with nearly its original amplitude Â1. Because of the superposition the

original amplitude Â2 of peak ∆2 cannot be observed directly (the spectrum shows A2

instead). This kind of overlapping is a common problem in crowded spectral regions

(generally due to limited resolution and increased line width).

The mathematical model of a single peak can be described by the following function

prototype:

Eq. 10

)(ˆ)( ∆−=
���

δδ fAa

The function f defines the shape of the peak. For each point δ
�

 of the n-dimensional

spectrum there exists an amplitude a(δ
�

). The n-dimensional model is usually

assumed symmetric about the peak center, i.e. )()( δδ
��

−= ff , and can be

constructed as the cross product of n one-dimensional models. As an example model

Eq. 11 shows a one-dimensional gaussian function for a peak k at ∆k with a gaussian

shape and line width Γk.
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Eq. 11
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We require the function to be normalized, i.e. the amplitude at the peak center is

equal to one (which is fulfilled by Eq. 11). In principle the function can be freely

chosen as long as it is normalized and defined for all points of the spectrum.

For the current implementation a superposition of a Gauss and a Lorentz function

with a tunable balance Λ and uniform line width Γ for all peaks was chosen:

Eq. 12
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1
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ef
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δ
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But other functions seem also to be useful, e.g. xx /)sin(  to compensate for the

truncation effect of the discrete Fourier transform.

The observable amplitude Ak of peak ∆k can now be written as the superposition of

the model functions of all n peaks of the spectrum:

Eq. 13

�
=

∆+∆−∆=
n

i
iikik NfAA

1

)()(ˆ

If we neglect noise N, we can build a linear equation system with an equation for

each of the n peaks of the spectrum. The values of Ak can directly be observed in the

spectrum and )( ikf ∆−∆ is calculated using the chosen model functions. The original

amplitudes of Âi are the only unknowns. We therefore get a solvable equation system

with n equations and n unknowns (as long as the matrix is not singular).

If we now multiply the original amplitudes of all n peaks of the spectrum by their

model function )( if ∆−δ  and add up the results (Eq. 14), we get an

ideal backcalculated spectrum, intrinsically without noise or artifacts.
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Eq. 14

�
=

∆−=
n

i
ii fAa

1
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δδ

This backcalculated spectrum can then be subtracted from the original one. In the

ideal case the difference would be zero. But since we neglected noise and artifacts,

at least these would remain if we had chosen well our model parameters. If we

however still see peak like shapes, we either have not considered enough peaks or

the model parameters do not fit well enough. Additional peaks can be picked (or

moved), if necessary. In addition, the model properties can be optimized interactively

by adjusting the relative line with or balance between Gauss/Lorentz with immediate

feedback of the effect to the backcalculated difference spectrum. Yet another benefit

is the fact, that we now can get an objective quality measure for the integrated peak

list by calculating the percentage of the remaining intensity in the difference spectrum

compared to the original spectrum.

Figure 25 shows the class BackCalculation representing Eq. 14. It is a subclass of

Spectrum and thus perfectly integrated into the model.

Spectrum

PeakListBackCalculation

difference: boolean
exact: boolean

1

Figure 25: Model of a Spectrum calculated from a PeakList

The algorithm proofed to be very robust and easy to apply. Even though (or because)

the concept is quite simple, the output quality is good and reliable. The effect of

parameter changes is immediately evident and results are reproducible with identical

settings. The reason for the robustness is the fact that the algorithm does completely

without decomposition or inference from the original spectrum. It is therefore

independent of resolution or signal to noise ratio. The original spectrum is only used

for reading out the amplitudes corresponding to the given peak positions (using the

adjustable tolerance window for splited peaks).
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The user can adjust all model parameters by interactively operating sliders with the

computer mouse (e.g. for line width or Gaus/Lorentz balance). The adjustments have

immediate effect. Any peak can sequentially be selected as reference in order to

optimize the model over the whole peak set. The current implementation uses the

same parameter settings for all peaks (which is very efficient and appropriate for our

present applications). The matrix of Eq. 13 only became singular if more than one

input peak had the same position. In practice this can easily be recognized and

avoided. Chapter 6.8 shows an application of the algorithm.
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In this chapter the SpectrumType model introduced in chapter 4.3 is applied to

specify common NMR experiment types used in homonuclear and heteronuclear

backbone and sidechain assignment.

(#� �$�<� :� =;	��8

 : ProcedureStep
id = 1
name = "H"
target = H
repeat = false
dimension = 1

 : ProcedureStep
id = 2
name = "H COSY"
target = H
hopCount = 3
repeat = false
dimension = 2

(#� �$�<� :� =;��� �8

 : ProcedureStep
id = 1
name = "H"
target = H
repeat = false
dimension = 1

 : ProcedureStep
id = 2
name = "H NOESY"
target = H
hopCount = -1
repeat = false
dimension = 2

(#' �$�<� :� =;��	�8

 : ProcedureStep
id = 1
name = "H"
target = H
repeat = false
dimension = 1

 : ProcedureStep
id = 2
name = "H TOCSY"
target = H
hopCount = 3
repeat = true
dimension = 2
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 : ProcedureStep
id = 1
name = "N"
target = N
repeat = false

 : ProcedureStep
id = 2
name = "HN"
target = H
hopCount = 1
repeat = false
dimension = 1

 : ProcedureStep
id = 3
name = "H NOESY"
target = H
hopCount = -1
repeat = false
dimension = 2

(#( �$�<� :�(�=; �? 	

 : ProcedureStep
id = 1
name = "N"
target = N
repeat = false
dimension = 2

 : ProcedureStep
id = 2
name = "HN"
target = H
hopCount = 1
repeat = false
dimension = 1

(#+ �$�<� :�'	=; �? 	����- * ����

 : ProcedureStep
id = 1
name = "C ali"
target = C
repeat = false
mean = 40
deviation = 35
dimension = 2

 : ProcedureStep
id = 2
name = "H ali"
target = H
hopCount = 1
repeat = false
dimension = 1

(#. '$��(�;�� #�<� :� =;��� �8

 : ProcedureStep
id = 1
name = "N"
target = N
repeat = false
dimension = 3

 : ProcedureStep
id = 2
name = "HN"
target = H
hopCount = 1
repeat = false
dimension = 1

 : ProcedureStep
id = 3
name = "H NOESY"
target = H
hopCount = -1
repeat = false
dimension = 2
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 : ProcedureStep
id = 1
name = "N"
target = N
repeat = false
dimension = 3

 : ProcedureStep
id = 2
name = "HN"
target = H
hopCount = 1
repeat = false
dimension = 1

 : ProcedureStep
id = 3
name = "H TOCSY"
target = H
hopCount = 3
repeat = true
dimension = 2

(#0 '$��'	;�� #�<� :� =;��� �8

 : ProcedureStep
id = 1
name = "C"
target = C
repeat = false
dimension = 3

 : ProcedureStep
id = 2
name = "HC"
target = H
hopCount = 1
repeat = false
dimension = 1

 : ProcedureStep
id = 3
name = "H NOESY"
target = H
hopCount = -1
repeat = false
dimension = 2

(#�1  	� 	
@	�A� 

 : ProcedureStep
id = 3
name = "C"
target = C
hopCount = 1
repeat = false
mean = 175
deviation = 20

 : ProcedureStep
id = 1
name = "CA/CB"
target = C
mean = 40
deviation = 35
dimension = 2

 : ProcedureStep
id = 2
name = "CA"
target = C
hopCount = 1
repeat = false
mean = 40
deviation = 35

 : ProcedureStep
id = 4
name = "N"
target = N
hopCount = 1
repeat = false
dimension = 3

 : ProcedureStep
id = 5
name = "HN"
target = H
hopCount = 1
repeat = false
dimension = 1
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 : ProcedureStep
id = 3
name = "C TOCSY"
target = C
hopCount = 3
repeat = true
mean = 40
deviation = 35

 : ProcedureStep
id = 1
name = "H INEPT"
target = H
dimension = 1

 : ProcedureStep
id = 2
name = "C INEPT"
target = C
hopCount = 1
repeat = false
mean = 40
deviation = 35
dimension = 3

 : ProcedureStep
id = 4
name = "H TOCSY"
target = H
hopCount = 1
repeat = false
dimension = 2

(#��  	@	A ;��	�8 ����� ����

 : ProcedureStep
id = 3
name = "C TOCSY"
target = C
hopCount = 3
repeat = true
mean = 110
deviation = 25

 : ProcedureStep
id = 1
name = "H INEPT"
target = H
dimension = 1

 : ProcedureStep
id = 2
name = "C INEPT"
target = C
hopCount = 1
repeat = false
mean = 110
deviation = 25
dimension = 3

 : ProcedureStep
id = 4
name = "H TOCSY"
target = H
hopCount = 1
repeat = false
dimension = 2

(#�'  �	


 : ProcedureStep
id = 3
name = "N-C INEPT"
target = C
hopCount = 2
repeat = false
mean = 53
deviation = 15
dimension = 2

 : ProcedureStep
id = 1
name = "H"
target = H
repeat = false
dimension = 1

 : ProcedureStep
id = 2
name = "H-N INEPT"
target = N
hopCount = 1
repeat = false
dimension = 3
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 : ProcedureStep
id = 3
name = "N-C INEPT"
target = C
hopCount = 2
repeat = false
mean = 40
deviation = 35
dimension = 2

 : ProcedureStep
id = 1
name = "H"
target = H
repeat = false
dimension = 1

 : ProcedureStep
id = 2
name = "H-N INEPT"
target = N
hopCount = 1
repeat = false
dimension = 3

(#�(  � �

 : ProcedureStep
id = 3
name = "HB"
target = H
hopCount = 4
repeat = false
dimension = 2

 : ProcedureStep
id = 1
name = "HN"
target = H
repeat = false
dimension = 1

 : ProcedureStep
id = 2
name = "N"
target = N
hopCount = 1
repeat = false
dimension = 3

(#�+ @ A		 ;	��8 ����- * ����

 : ProcedureStep
id = 3
name = "CC COSY"
target = C
hopCount = 1
repeat = false
mean = 40
deviation = 35
dimension = 3

 : ProcedureStep
id = 1
name = "H"
target = H

 : ProcedureStep
id = 2
name = "HC INEPT"
target = C
hopCount = 1
repeat = false
mean = 40
deviation = 35
dimension = 2

 : ProcedureStep
id = 4
name = "CH INEPT"
target = H
hopCount = 1
repeat = false
dimension = 1
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 : ProcedureStep
id = 3
name = "CC COSY"
target = C
hopCount = 1
repeat = false
mean = 110
deviation = 25
dimension = 3

 : ProcedureStep
id = 1
name = "H"
target = H

 : ProcedureStep
id = 2
name = "HC INEPT"
target = C
hopCount = 1
repeat = false
mean = 110
deviation = 25
dimension = 2

 : ProcedureStep
id = 4
name = "CH INEPT"
target = H
hopCount = 1
repeat = false
dimension = 1

(#�/ @ A		 ;��	�8 ����- * ����

 : ProcedureStep
id = 3
name = "C TOCSY"
target = C
hopCount = 1
repeat = true
mean = 40
deviation = 35
dimension = 3

 : ProcedureStep
id = 1
name = "H"
target = H

 : ProcedureStep
id = 2
name = "HC INEPT"
target = C
hopCount = 1
repeat = false
mean = 40
deviation = 35
dimension = 2

 : ProcedureStep
id = 4
name = "CH INEPT"
target = H
hopCount = 1
repeat = false
dimension = 1

(#�0 @ A		 ;��	�8 ����� ����

 : ProcedureStep
id = 3
name = "C TOCSY"
target = C
hopCount = 1
repeat = true
mean = 110
deviation = 25
dimension = 3

 : ProcedureStep
id = 1
name = "H"
target = H

 : ProcedureStep
id = 2
name = "HC INEPT"
target = C
hopCount = 1
repeat = false
mean = 110
deviation = 25
dimension = 2

 : ProcedureStep
id = 4
name = "CH INEPT"
target = H
hopCount = 1
repeat = false
dimension = 1
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Computer Aided Resonance Assignment (short CARA) is on one hand the name of

an optimized process model for the analysis and assignment of NMR spectra, and on

the other hand the name of an interactive, graphical computer program supporting

that process. This chapter gives an introduction into both the process and the

computer program. It has the form of a tutorial, subdivided along to the main use

cases of the process. The descriptions apply to CARA 1.1. We start with an overview

explaining the general concepts.

+#� �6 ��6 ��B

The computer program CARA is a complete implementation of the conceptual model

formally introduced in chapter 4. It should be regarded as a proof-of-concept of the

model. CARA is a modern, efficient computer program featuring a state-of-the-art

graphical user interface (GUI) with many usability features (like undo/redo) and a

look and feel commonly accepted by the community. It is completely platform

independent, offering identical features on all platforms. The program is currently

deployed on Microsoft Windows (9x, ME, 2k, XP), Linux, Macintosh OS X, Sun

Solaris and Silicon Graphics IRIX. Since CARA simply consists of a single executable

file, installation is very easy (no libraries and the like are needed). Everything is

written in ANSI C++ [Stroustrup 1997] (more than hundred thousand lines of code),

adhering to modern software engineering standards. The program is therefore very

fast, maintainable, extensible and adaptable to future developments. It can be

downloaded for free from http://www.nmr.ch.

CARA is organized around a central Explorer window (see Figure 26). It is present

during the whole session and enables access to all other tool windows of CARA. In

contrast to previous solutions CARA doesn't follow the one-size-fits-all approach, but

offers specialized environments for all major use cases. The user can even construct

new environments if she wants to use the built in scripting language.
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Figure 26 shows the nine standard tool windows (i.e. environments). All of them

(besides NEASY, see below) follow the same presentation and usability concepts

(i.e. their look and feel is very similar). Their difference lays in the specialization of

their functionality.

Explorer

Phaser

NEASY

MonoScope

SliceScope

SynchroScope

StripScope

SystemScope
PolyScope

HomoScope

Figure 26: The CARA editors accessible with the Explorer

The following list gives a brief overview of the purpose of each environment.

1. SynchroScope is optimized to analyze HSQC/HNCA pairs (i.e. all spectra which

follow the one-strip-per-residue-approach). It combines the plane view of the

HSQC with a strip view of the HNCA.

2. StripScope is used to do 3D triple-resonance backbone assignment, i.e. to show

selected strips, combine them to fragments and to map them interactively on the

sequence.

3. SystemScope is the tool for managing and assigning the spins of a single spin

system. It is used for side-chain assignment and optimized for the navigation in

TOCSY type spectra. The tool makes use of pathway simulation.

4. HomoScope is optimized for homo-nuclear assignment of 2D spectra, but can

also be used e.g. to check the completeness of a side-chain assignment using a

2D [1H, 13C]-HSQC (Vuister et al. 1992). It can handle both SpinLinks and

pathway simulation.

5. PolyScope combines the features of HomoScope with the navigation concepts of

SynchroScope. It can be used for 3D NOESY constraint gathering or special

assignment strategies.
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6. MonoScope is a flexible tool to explore two or higher-dimensional spectra. It can

be used to create and manage peaklists and to perform peak volume

determination of one or a series of spectra.

7. SliceScope is a simple viewer for 1D spectra.

8. Phaser can be used to adjust the phase of real and imaginary spectra.

9. NEASY is an emulation of a functional subset of XEASY [Bartels et al. 1995]. Its

main purpose is to enable backward compatibility and to ease transition to CARA.

The central unit of work managed by CARA is a so called Repository. It contains all

information needed for and coming up during an assignment project (besides the

spectrum files, which are only referenced).  Figure 27 gives an overview of the

primary objects a Repository contains. Most of them were introduced and described

in chapter 4.

Repository

filePath: string

ResidueType

Project

name: string

*

SpectrumType

SystemType

Sequence

Spectrum

SpinSystem

Spin

SpinLink

1

*

*

*

*

*

*

*

PeakList

*

Script

*

Figure 27: Structure of a Repository

It is important to notice that a Repository brings together all library and project data

into a single file (omitting the versioning problems of previous solutions with separate
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library files). A Repository can contain more than one Project which is convenient

when the work is subdivided into related sub-projects.

Figure 28: CARA Explorer

The main purpose of the Explorer (Figure 28) is to manage a Repository. The left

side of the split bar shows a category tree and the right side is the pane where the

content of the selected category is displayed (or the default pane as shown if a group

category is selected). The following list gives a short overview of the categories.

1. Attribute Definitions: contains sub-categories (not shown) for each object type

which can have dynamic attributes (see chapter 6.11).

2. Message Log: displays a list of system messages which should not be ignored.

3. Projects: this group contains all Projects contained in the Repository. In Figure 28

there is one Project called "groes".

4. Peak Lists: displays a list of all PeakLists of the project (if there are any).

5. Sequence: shows the Sequence associated with the project.

6. Spectra: displays the list of spectra associated with the project. The list is used to

manage spectra and to open them using the tool windows.

7. Spins: this is the main list of all Spins and SpinSystems of the Project. Spins can

either be managed from within this list or from within a tool window.



.�

 2000-2005 Rochus Keller

8. Spin Links: this pane contains the main list of all SpinLinks of the Project. It can

be used to directly manage them (i.e. to create or delete them or change

attributes).

9. Systems: this is the main list of all SpinSystems with their subordinate Spins. It

can be used to directly manage SpinSystems, Spins, SpinLinks and all kind of

assignments.

10. Residue Type, Spectrum Type, Spin System Type: list and manage

ResidueTypes, SpectrumTypes and SystemTypes. The changes are immediately

visible to all Projects of the Repository.

11. Terminal: this pane gives access to the scripting environment of CARA. It

contains a command line and is used to manage Scripts.

Note that virtually all CARA windows and panes (i.e. different parts of the windows)

support context menus, which pop up when the user presses the right mouse button

(or the left mouse button while pressing the command key on Macintosh). Most

functions of CARA are accessible that way. There are also some essential navigation

shortcuts, which are not self-evident but important enough to be considered from the

beginning (for a complete list see the annex on page 140).

+#� �����
� �� - ���"�- ������7

A Repository is a file, residing somewhere in the file system. After starting CARA, the

Explorer has automatically created a new, empty Repository. You can establish this

state anytime yourself by executing the menu command File/New. A Repository can

be saved to a file using the menu commands File/Save As or File/Save. The former is

used to save the Repository to another file (which is the default behavior for new

Repositories) and the latter updates the given file with the most recent changes. With

File/Open you load a Repository from a file.

You can setup a Repository completely from scratch, but this seems only to be

necessary if you want to analyze new molecule or spectrum types, for which no

templates are available yet. For most users it will be much more convenient to start a

new Repository from a template (menu File/New from Template). A template is

nothing more than an ordinary Repository created by yourself or someone else. If
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you use it as a template, only its library part is copied into your new Repository (i.e.

no project data). If you are using CARA for NMR based protein structure

determination, your new Repository would then contain all amino acids, spin system

types, scripts and common NMR experiments. So you could immediately start setting

up your project (as described in chapter 6.3). For all other users we briefly explain

how to survive without a template.

+#�#� )�
�� �
� �"���� � ��7 - ��

At latest when you try to load a sequence into a project whose residue types are not

known to CARA, you will get a friendly error message. This signifies that your

sequence file either doesn't use the same residue type nomenclature like your

Repository or the residue type is not yet defined. To create a new residue type, click

on the Residue Types category in the Explorer. The pane shown in Figure 29

becomes visible (it might be empty or look different depending on how you started).

Figure 29: Explorer Residue Types pane

The figure also shows the context menu, which appears when the right mouse button

is pressed (or the left button together with the command key on Macintosh OSX).

You create a new residue type by executing the corresponding menu entry. A dialog
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box appears where you have to enter three alternative name versions (long, short

and letter). A residue type is always referenced by its unique short name from

everywhere within the repository. The long and letter versions are just for

convenience. Consider that only the long name can be changed later. After creation

the new type appears at the end of the list.

A residue type can only be deleted if it is not referenced (e.g. by a sequence).

Optionally a spin system type can be assigned to the residue type to bias the

sequential assignment of a spin system (see chapter 4.2.2 and 6.6).

The menu item Set Terminals controls by which atoms two residues are linked

together (e.g. with N to the left and with C to the right in case of amino acids). The

currently selected residue type can be declared to be used as the generic type for

pathway simulation (in case a spin system has no assignment yet, see chapter

4.3.1). Both options affect the whole repository (i.e. all contained projects).

The options Edit Attributes and Open Object Table will be explained in chapter 6.11.

The molecule information of a new or existing type can be changed within the

Molecule Viewer (Figure 30). The figure again shows the context menu.

   

Figure 30: Molecule Viewer with Residue Type Arginine (left) and the effect of

Select Spins on a CA with hopCount 3 on H (right)

New atoms are created by first positioning the black position rectangle using the

mouse and then executing the New Atom command from the context menu. A unique
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tag and other model attributes then have to be entered into a dialog box. The

attributes group, mean and deviation are optional and can be changed later. The

group to which an atom belongs to, is drawn on the lower part of the circles. The

bond between the atoms can be toggled on or off by the corresponding menu item

(or by pressing the control key and then clicking on the target atom). The new atoms

become visible in the explorer pane after executing Reload.

With the menu item Select Spins one can check the effect of a certain hop count to

the given molecule (right part of Figure 30, see also chapter 4.3 for explanation).

+#�#� )�
�� �
� ��- �� ��� � ��7 - ��

Before you can load an NMR spectrum into a project the corresponding spectrum

type has to be defined. To create or change a spectrum type, click on the

corresponding category in the Explorer. The pane shown in Figure 31 appears.

Figure 31: Explorer Spectrum Types Pane

With the context menu items Add Type or Duplicate Type a new spectrum type can

be created. A unique name as well as the atom types of all needed dimensions have

to be entered. Spectrum types are usually defined with the dimension order they are

most likely to be presented on screen (e.g. HN=horizontal and C=vertical for a

HNCA). Once created only the names can be changed later (but not the atom types
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or number of dimensions). Furthermore a type cannot be deleted as soon it is

referenced by a spectrum.

For each dimension the spin labels one expects to see can be optionally declared.

The selected HNCA in Figure 31 contains a unique HN and N label in dimension X

and Z and the two labels CA and CA-1 in dimension Y. Because HN and N are

unique, CARA can automatically rotate and display HNCA spectra using

SynchroScope and StripScope (see chapter 6.4).

For each spectrum type an experiment procedure can optionally be defined. Figure

32 shows the dialog for procedure editing. The periods of the NMR experiment are

declared in order of their execution (see chapter 4.3). The Dimension attribute is then

used to map them on the dimensions of the spectrum type (idicated in the upper

pane of the dialog for convenience). Each dimension may be referenced exactly

once. Only steps with atom types unequal to "?" are considered valid. All spectrum

types examined by the author could be modeled by six steps only. CARA doesn't

impose a restriction on the number of steps and the dialog could be easily extended

if necessary.

  

Figure 32: Experiment Procedure of HNCA (left) and simulated magnetization

transfer pathway of Alanine (right)

With the command Show Experiment Path the user has the possibility to validate

whether the defined procedure renders the correct pathways. After selecting the
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residue type from a popup dialog, the simulated magnetization paths are presented

as a tree (Figure 32, right). The algorithm has found the two paths HN-N-CA and HN-

N-CA-1. The paths starting with QB and HA were cut off after the first step. If we had

left out the declaration of mean and deviation for step 3, three new paths to C, C-1

and CB would be detected (try it). The concepts of pathway simulation is explained in

chapter 4.3.1.

+#' �����
� �� - ���!��C�� �

If the repository has been successfully set up (by using a template or creating

everything by yourself), one can start creating projects. To accomplish this the user

activates the menu Projects/New Project from within the Explorer. First a unique

project name has to be entered. CARA then asks the user, whether a sequence

should be loaded. If the user decides not to load a sequence (e.g. if only amide

exchange rates should be determined), the creation is finished. Otherwise the user

can select a sequence file (in EASY [Eccles et al. 1991] format) from the file system.

Several variations of sequence files exist. The following table shows three variations

of the first six residues of GroES. Each line corresponds to a residue.

Table 3: Sequence file variations, plain (left), with residue numbers (mid) and

with assignments (right)

)*+

,�-

./*

,01

203

/*4

)*+			 #

,�-			 5

./*			 6

,01			 7

203			 �

/*4			 8

)*+			 #	 75�

,�- 5	 695

./*			 6	 6::

,01			 7	 6�8

203			 �

/*4			 8	 6:;

The plain variant is loaded without further notice (as long as each residue type is

available). If CARA reads the version in the middle, it asks the user, whether the

numbers represent residues or spin systems. In the latter case empty spin systems

with the given number are created and initially connected to fragments and assigned
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to the sequence. The same thing happens if CARA reads the right variation and the

user agrees to create spin systems.

The user might optionally import an spinlist (using EASY proton list format) if one is

available (i.e. corresponding to the sequence loaded). The user does so by selecting

the project name in the category tree of the Explorer and activating

Project/Import/Atom List from the menu. The user is then asked whether the

assignment numbers reference residues or spin systems. This gives four different

possibilities:

1. If the spin systems were created together with the sequence, and the spinlist

references residues, then the atoms are imported into the spin systems, which

assigned to the corresponding residues.

2. If no spin systems were created when importing the sequence, and the spinlist

references residues, then new spin systems are created and assigned to the

residues, which were referenced by the atoms (i.e. a system is only created if at

least one atom references the residue). The atoms are imported into the new spin

systems.

3. If spin systems were created together with the sequence, and the spinlist

references spin systems, then the systems are only created if not yet existing, but

not assigned to any residue. The atoms are imported into the referenced spin

systems, whether they already existed or were created.

4. If no spin systems were created when importing the sequence, and the spinlist

references spin systems, then all referenced systems are created, but not

assigned to any residue. The atoms are imported into the new spin systems.

Table 4: Part of the imported atomlist (i.e. spinlist)

	58�	#59�:�7	�����	-						;:

	588			:��7:	�����	<-					;:

	58;		���8�#	���#6	�,					;:

	589	:::����	�����	<,					;:

	5;�	:::����	�����	�=					;:
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Only valid lines are imported from atomlists (i.e. where the PPM value is unequal to

999.000). The labels of the imported lines must be valid and also unique within the

target spin systems. If the atomlist contains double spin numbers or the number is

already occupied by a spin of the project, the user has the chance to ignore the

doubles or abort the import. The import of further atomlists can happen at any time in

the future, but CARA will display a warning message if spins already exist in the

project. The imported spins and spin systems are listed in the Spins and Systems

pane of the category tree in Explorer (see Figure 33). The panes are empty of

course, if no atomlist was imported and no spins were created otherwise.

Figure 33: A new project after importing an atomlist

After the sequence and perhaps the atomlist was imported, it is time to add NMR

spectra to the new project. If the user clicks on the Spectra category in the Explorer,

a pane listing all spectra of the project is displayed (initially empty). Within the

spectrum pane, a context menu is available. The menu item Add Spectrum contains

all spectrum types as sub items. If for example the user wants to load a HNCA

spectrum, she has to activate the menu item Add Spectrum/HNCA (provided a

spectrum type called HNCA exists). The spectrum file has then to be looked up using

the file selector dialog.

CARA directly supports different spectrum file types (e.g. EASY, Bruker, etc.). Two

file types ("CARA Spectrum *.nmr" and "EASY Spectrum *.param") are explicitly

listed. The other formats can be accessed using the * or *.* file patterns. The
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supported file types can be directly used, i.e. there is no need to convert them (as is

often the case with other software packages).

The dialog shown in Figure 34 can be used to load more than one file at the same

time (multi selection is possible by pressing the shift or control keys while clicking the

mouse on the file name).

Figure 34: Spectrum file selector dialog

CARA tries to automatically rotate the dimensions of the loaded spectrum, so that

they fit the given spectrum type. Depending on the spectrum file format, there are

different hints about the atom types related with the dimensions. For example in a

EASY param file (Table 5) the lines Identifier for dimension are usually used to

assign an arbitrary name to the dimension. CARA uses the first letter of this name as

the atom type symbol if available (i.e. N and H in the example).

Table 5: EASY param file of a HSQC spectrum

>������	�����������������������	#

-�����	�
	����������	����������	5

#8	��	9	���	
���	����	���������	#8

������������	
��?�����	��	�#	��	9#��98�:9

������������	
��?�����	��	�5	��	9���#66:;5

��������	�����	�����	��	�#	����	58�6�#��#

��������	�����	�����	��	�5	����	8�:;76��

)�@����	��������	���
�	��	�#	��	#65��;596�

)�@����	��������	���
�	��	�5	��	##�9757��

����	�
	��������	��	�#	��������	�#5
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����	�
	��������	��	�5	��������	#�57

��������@	����	��	�#	����������	87

��������@	����	��	�5	����������	#59

2����������	
��	�#	������������	5

2����������	
��	�5	������������	#

A������	��	�#	�����������������	0�<

A������	��	�5	�����������������	0�<

+���	�
	��������	��������������	B

.�����
���	
��	���������	�#	���	-

.�����
���	
��	���������	�5	���	<-

There are spectrum file formats which don't provide enough information about atom

types. CARA then tries to guess the atom type by comparing the mean of the given

PPM range to a table of typical PPM ranges (e.g. -2..14 is interpreted as H, 10..100

as C and 100..200 as N). This can lead to confusion if for example only the PPM

area of aromatic spins is recorded. In these cases, CARA will do the wrong guess

and the user has to correct the mapping using the context menu function Map to

Type (if CARA detects the uncertainty it automatically executes this function after

loading). Once the mapping is adjusted, one doesn't have to bother anymore, since it

is stored with the repository. After loading, the name of the spectrum can be changed

using menu Rename Spectrum. A default name was automatically deduced from the

file name by CARA. The changed name should be unique and informative, since it is

used in the spectrum selection menus all-over the program.
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Figure 35: Spectrum pane of the project after loading spectra

A spectrum can be removed any time, or the spectrum file can be replaced to redirect

the the reference to another file (context menu items Remove Spectrum and Replace

Spectrum). The latter can also be used if the spectrum file was renamed or moved to

another directory (but don't do this while they're presented in a CARA window).

The project is now ready to be used. Most CARA tool windows (scopes) can be

opened by first selecting a spectrum from the list (as in Figure 35) and then executing

the corresponding context menu function (e.g. Open MonoScope, etc.). We will make

extensive use of this menu items in the next sections.

+#2  �����
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Chapter 2.3 introduces general strategies for sequence specific assignment. In this

chapter we will show how backbone resonance assignment is accomplished using

double and triple-resonance spectra like [1H,15N]-HSQC, HNCA, HNCACB and 15N-

ed. [1H,1H]-NOESY. We assume that a project was set up as described in the

previous chapter (i.e. the sequence and spectra were loaded, as shown in Figure

35). The spectra used in this and the next chapter come from the structure

determination project of the protein FimD [Bettendorff, Pascal: unpublished data],

which was one of the first projects accomplished using CARA.
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The main CARA tools used for this process are SynchroScope, StripScope and

optionally SystemScope. We start by selecting a [1H,15N]-HSQC spectrum in the

spectrum pane of the CARA Explorer and executing the function Open

SynchroScope from the context menu. If CARA complains you should check that the

dimension spin labels of the spectrum type are properly declared (analogous to

Figure 31).

Figure 36: Identifying spin systems with SynchroScope

SynchroScope allows the simultaneous analysis of a 2D [1H,15N]-HSQC and any 3D

spectrum with a unique spin label pair corresponding to the one of the 2D spectrum

(HN and N in our case). CARA automatically finds and properly rotates all 3D spectra

of the project, which fulfill this condition. They can be selected from the menu

Strips/Select Spectrum. In Figure 36 we have selected a HNCA, from which a slice

and two orthogonal strips are presented in the right part of the window. If you click in

the HSQC plane, the cursor and with it the visible HNCA detail are changed. You can

select the detail area of the plane by drawing a rectangle in the overview pane in the

lower left of the window (by clicking, dragging and releasing the mouse). There are a

plenty of shortcuts for zooming and scrolling available (please refer to the annex on

page 140). Most panes also have their own context menu (which is accessible by

right-clicking on the pane, or command-clicking on Macintosh).

It's now time to pick the first spin system. For this purpose, the cursor shall be

positioned on an intensity peak in the HSQC plane, and then the command Pick

System shall be selected from the context menu or the Plane menu at the top of the
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window. Like in XEASY, there is support for keyboard commands in CARA (e.g.

press "PY" to pick a spin system). A new spin system with a unique identification

number automatically provided by CARA appears.

If a new spin system was found, it is in most cases immediately possible to identify

the CA and CA-1 within the HNCA strips (as a characteristic peak pair, the weaker

one corresponding to CA-1). The identification is documented by picking and labeling

the two spins (using the corresponding functions in the context menus of the strips).

Also note that it is probably necessary to adjust the width of the strip display (menu

Set Strip Width, e.g. 0.2 PPM for HN and 1.5 PPM for N).

An important point was neglected up to now, the calibration of spectra. It can happen,

that the HN/N plane of an HNCA has an offset compared to HSQC. You can correct

this using the following steps:

1. Select a single spin system peak within the HSQC plane and position the cursor

on a peak within the strips.

2. Uncheck the menu View/Hide 3D Slices and check the menu Plane/Show 3D

Plane. The selected HNCA plane is now displayed.

3. Position the cursor on the peak maximum in the plane, shift-click the

corresponding spin system peak (so it is selected) and execute Plane/Calibrate

From System.

The spectrum (i.e. its PPM scale) has moved so the selected peak should now be on

the intensity maximum. A similar procedure can be applied, if the strips of two 3D

spectra have to be calibrated (e.g. to synchronize the C dimension of a HNCACB and

a HNCA). To do this position the cursor to the intensity maximum within one of the

strips, shift-click on the corresponding spin peak and execute Strips/Calibrate Strip. It

can happen, that not all but only single peaks have non-systematic offsets between

different spectra. In that case the user should not calibrate the whole spectrum, but

adapt a single peak to a given spectrum using Plane/Move System Alias or

Strips/Move Spin Alias.

Ideally it is possible to pick the HN, N, CA and CA-1 (and mostly also the CB and CB-

1) for all spin systems (besides Prolines) from within the SynchroScope. If this is

accomplished, we can start to combine spin systems into fragments using

StripScope. The window is opened by selecting the spectrum in the spectrum pane of
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the CARA explorer and executing the function Open StripScope from the context

menu. If CARA complains you should check that the dimension spin labels of the

spectrum type are properly declared (analogous to Figure 31).

StripScope shows five (up to ten) strip panes on the right, a slice pane in the middle

and a spin system tree in the left. Again there are context menus associated with the

panes. All spin systems containing spins whose labels correspond to the ones in the

unique spin label set of the spectrum type can be displayed as strips. Using the

menu View/Select Strips the user can control, which subset is shown (e.g. all

possible strips, a certain fragment only, all possible successors/predecessors of a

reference strip, etc.). The user can page through the selected subset with the menus

View/Next Page or View/Previous Page (or by alternatively using the commands FS

and BS).

Figure 37: Combining and mapping fragments with StripScope

As in SynchroScope CARA automatically finds and properly rotates all 3D spectra of

the project, which have the same unique spin label set as the one opened in first

place. The user can select from menu View/Select Spectrum which spectrum she

wants to analyze (or by typing the commands NS or PS). The Strips menu enables

the user to pick, label, move or delete the spins of the focus strip. All changes are

immediately reflected in the spin system tree on the left.
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CARA supports the fragment building process by an automatic strip matcher, which

can be controlled by the Setup menu (the algorithm was introduced in chapter 4.2.1).

The results of the algorithm are shown in the system tree (as split jigsaw pieces). In

Figure 37 we can see that spin system 42 is a good candidate successor of system

41. The user can ask CARA to present all possible successors of system 41 as strips

and then compare their slices (as shown in the figure). If she decides in favour of

system 42, the menu command Link to Reference is executed from the context menu

of the corresponding strip. This process is then continued to combine as many spin

systems to fragments as possible. The user should set appropriate tolerance values

(menu View/Set Spin Tolerance) to narrow the matches.

The fragment building is usually interleaved by runs of the mapping algorithm

described in chapter 4.2.2. This supports for one part the decision about the

placement of a fragment on the sequence (i.e. the sequence-specific assignment),

but can also be used as a decision aid which fragments should be combined (see

Figure 38).

Figure 38: Sequence mapping of three fragment variations

The example shows that the fragment 41-45 has more ambiguity (i.e. less

significance) than fragment 41-42. The decision becomes even easier after

combining 41, 42, 43 and 44 into a fragment (because the spin systems were

renumbered after final assignment for clarity reasons, we can immediately see that

CARA made the right guess). In future versions of CARA this feature will be

automated, so different fragment variations are automatically created and checked
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for their match to the sequence. Already today CARA can optionally cooperate with

the program MAPPER [Güntert et al. 2000] (menu Projects/Export/Mapper File from

within the Explorer) to get an optimal mapping considering all available fragments at

once.

SynchroScope and StripScope can be used in parallel of course, i.e. there is no need

to bring system and spin picking to an end before starting fragment building and

assignment. There is no redundant information and each change in one window is

immediately reflected in every other. It is even possible to open more than one

StripScope or SynchroScope windows at the same time (e.g. if there are spectra with

different sets of unique spin labels).
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The previous chapter showed how CARA can be used to do the sequence-specific

assignment using triple-resonance spectra. The spin systems were combined to

fragments and mapped to the sequence. We can therefore assume that we know at

least the HN, N and CA chemical shifts of each residue, when the backbone

assignment ends. This chapter gives a brief introduction how to use CARA for

sidechain assignment. Again the spectra come from the FimD [Bettendorff, Pascal:

unpublished data] project.
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Figure 39: N/HN strip of ALA 17 in 15N-ed. [1H,1H]-NOESY

The main tool for sidechain assignment is SystemScope. We will now start by

selecting a 15N-ed. [1H,1H]-NOESY spectrum in the spectrum pane of the CARA

explorer and executing the function Open SystemScope from the context menu.

SystemScope is a tool window consisting of four parts. The spin system to be

analyzed is selected using the popup list in top left part of the window. All spins

contained in the selected spin system are shown together with proposed strip

positions (automatically inferred and updated to each spin system change by

pathway simulation). The strip and its slice appear in the middle of the window as

soon as the user selects one of the proposed strip positions and executes Show Strip

from the context menu (or double-clicks on the list item).

The example strip initially shows four unpicked cross-peaks (see Figure 39). The one

in the bottom is most likely caused by water and therefore not interesting. This can

be confirmed by executing Show Depth from the context menu of the strip and

watching the intensity spread along the N dimension of the orthogonal plane in the

right part of the window. The top most peak of the strip can be picked and

immediately identified to be QB by sequentially executing Pick Spin and Label Spin
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from the context menu (note that CARA allows to only select valid labels from the

menu). There are two peaks remaining which both could be the expected HA. We

pick both of them and execute Force Spin Label twice entering "?HA" in the label

entry dialog (only one HA would be acceptable if the "?" was left out). The result

should resemble Figure 39.

Figure 40: HA/CA strip of ALA 17 in (H)CCH-COSY

Next a (H)CCH-COSY spectrum is opened using SystemScope. Initially two

proposed strip positions are shown in the lower left list, one for each HA guess. The

strip of spin 199 contains only noise, but the one other shows two peaks (see Figure

40, where CA 192 was already assigned). The CB can directly be picked and labeled

(which is immediately reflected in the lists in the left part of the window). Since the

correct HA is known now, the command Accept Label has to be executed (by

selecting spin 198 in the list at the upper left side and using the context menu). The

label of spin 199 is changed back to "?" and 198 is accepted to be HA (i.e. the "?" is

removed).

Another way to find the CB spin makes use of a 1H/13C based 3D NOESY or TOCSY

spectrum. Up to now we used the orthogonal pane in the right part of the window

only to display the depth plane corresponding to the strip, i.e. the z/y plane at the

strip position x0. In Figure 40 for example the orthogonal pane shows the plane along
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both C dimensions at the strip position given by spin 198. But SystemScope also

allows to use another than the strip position as the origin of the z/y plane.

Figure 41: Detecting CB in the orthogonal plane with origin QB

In Figure 41 the spins HA and QB were first selected in the strip. Then Show

Orthogonal was executed from the context menu. Two C/C planes appeared within

the orthogonal pane, one at the position of QB and the other at the position of HA

(i.e. the orthogonal pane was automatically split).

Since the spectrum was recorded with folded signals, the option Show Folded has to

be enabled from the View menu (so the plane shows a shifted or mirrored copy of the

spectrum, when an area outside the original sweep width is selected). The light

vertical lines in the two C/C planes represent the borders of the original sweep area

of the spectrum. The cursor position reported in the status bar is extended by the

"quadrant number" in brackets (i.e. the ordinal offset from the original sweep area).

As expected the plane at origin HA already displays the CA spin (inferred by pathway

simulation). If the CB wasn't identified yet, it could now be picked and labeled within

the plane at QB, using the items Pick Spin and Label Spin from the context menu.

Due to pathway simulation the menu only contains the expected labels.
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The Show Orthogonal function is particularly useful for analyzing 3D TOCSY spectra.

Starting e.g. from a CA/HA based strip, all other C/H pairs of the amino acid are

visible as a characteristic "TOCSY tower" in the strip pane. By switching between the

TOCSY and COSY spectra, the assignment is straight forward. If the user is not sure

about which spins are expected to see in the selected strip, she can check the Label

Spin menu (which always contains the label set corresponding to the selected strip

position, inferred by the pathway simulation), or execute the Show Spin Path function

in the list of proposed strip positions. The user can then make her way through the

whole spectrum by executing Show Orthogonal for all spins of the selected strip. For

each spin its immediate neighbors can usually be identified in the orthogonal plane

by comparing the characteristic pattern of the TOCSY tower (or by directly picking

them in case there are no ambiguous signals visible). Whenever a new spin is picked

and labeled, the two lists in the left part of the window (showing all spins and

proposed strip positions of the selected spin system) are immediately updated to

reflect the current state of the assignment.

The completeness of a sidechain assignment can be checked for example by

monitoring whether all peaks on a [1H,13C]-HSQC spectrum are identified. This is

possible, if the [1H,13C]-HSQC is simultaneously displayed in a HomoScope window.

The assignment process shown is executed for each residue of the sequence. Finally

there should be a complete spin list for each spin system, where each spin carries a

label of an atom of the corresponding residue type. The atomlist can then be

exported by either using the menu Projects/Export/Atom List from within the Explorer,

or by selecting a spectrum in the Spectra pane of the Explorer and selecting Export

Atom List from the context menu. In the latter case, the alias chemical shifts of the

selected spectrum are used.

+#+  �� �
� � �����
���� 
� �
�

Homonuclear assignment is rarely used today, since it is mainly useful for small

macromolecules. This chapter briefly shows, how sequence-specific assignment can

be accomplished in CARA using 2D COSY, TOCSY and NOESY spectra. The only

tool needed is HomoScope. The following example nicely shows the effect of peak
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inference. The spectra come from the ER23 project [Damberger, Fred: unpublished

data].

After the project is created (as described in chapter 6.3) and all needed spectra are

loaded, the user should select a COSY spectrum in the corresponding Explorer pane

and then execute Open HomoScope from the context menu. The window opens and

we can start picking new spin systems in the amid/alpha region of the spectrum

(upper left part) using the menu Picking/Pick New System. The labels of the peak

can then be set using menu Picking/Label Peak (in the given region the labels

HN/HA can immediately be assigned).

Figure 42: Picking a Glycine in a 2D [1H,1H]-COSY spectrum

The pattern in Figure 42 is typical for a Glycine. The second peak is picked by simply

placing the cursor on it and activating Picking/Extend Vertically , which doesn't create

a new spin system but extends the previously selected reference spin system by a

new spin. The horizontal spin of the new peak already carries the HN label (because

it is identical to the horizontal spin of the reference spin system). Since we actually

know its a Glycine, we could right know classify the spin system as of AX type, but

we postpone this for didactic reasons. Instead we label both vertical spins as ?HA

(spin systems allow to carry as many equal labels as needed as long they are in draft

state, notified by the "?" symbol). The menu View/Show List displays a tree list in the

right part of the window showing all spin systems and their spins (see Figure 42). We

see that CARA inferred this two peaks from three spins only.
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If we show the whole spectrum (menu View/Fit Window), seven additional peaks

become visible which were automatically inferred. The spin system pattern can be

made clearer by creating horizontal and vertical rulers along all peaks (by selecting

them and executing menu Ruler/Add Horizontal Ruler and Add Vertical Ruler). The

result should look like Figure 43. CARA in fact inferred nine peaks from three spins

only. If any of these spins is moved, all peaks are moved accordingly. In peaklist

oriented programs each peak was an independent entity and thus had to be moved

explicitly. The same applies to label and other changes (see below).

Figure 43: Detail of spin system pattern with rulers (positive contours only)

Now its time to set the spin system type. This can be done by either selecting one of

the peaks and then executing the menu Assignment/Set System Type, or by

selecting the system in the tree list and activate the function from its context menu.

The popup list of the dialog should contain the AX system type (if the repository was

properly set up). Then the two ?HA spins are relabeled as HA1 and HA2 either using

the Picking menu or Label Spin in the tree list. The label list should contain the labels

appropriate to a Glycine. The label change is immediately reflected on each peak

where it occurs. If peaks temporarily disappear in the plane (because the labels don't

fit the system type), continue in the tree list. If now the Show Alignment function is

executed for the spin system, all Glycines of the sequence are proposed with equal

significance (i.e. it is not yet possible to uniquely assign the spin system).

The process continues as shown by picking and classifying all spin systems using

the COSY and optionally the TOCSY spectrum. After or - if possible - during this
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process the user would try to connect the spin systems to fragments using the HAi-

1/HNi connectivities in NOESY (one can switch between spectra using the Spectrum

menu or the commands NS/PS). For this purpose the cursor is placed on the peak

and the menu Picking/Propose Peak is executed. A dialog appears showing all spins

around the cursor position (see Figure 44). If too many spins are displayed, one

should narrow the tolerance using menu Picking/Set Verti. Tolerance.

Figure 44: Identifying HAi-1/HNi connectivities in NOESY

If the user has made her choice, the cross-peak representing the connectivity

appears, but the spin systems are not yet linked together. This can be done by

selecting the cross-peak and then executing the menu Assignment/Link Systems.

CARA shows a dialog listing both fragment possibilities: 1-2 or 2-1. The first is the

one we want. This process is continued as long as possible. At any point the Show

Alignment function can be executed. Both the spin system types and the Hydrogen

chemical shift statistics are taken into account by CARA to calculate the alignment

(see chapter 4.2.2). The first line in the right part of Figure 45 is already the correct

solution and could immediately be assigned using the Assign context menu from

within the alignment window. The figure also documents the influence of the fragment

length on the number and assessment of possible mappings (i.e. another mapping

was considered the right one in case of fragment length two).
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Figure 45: Fragment alignment of length 2 (left) and length 3 (right)
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With the advent of algorithms like ATNOS [Herrmann et al. 2002a] it should be no

longer necessary to manually do constraint gathering and peak volume

determination. The process shown in this chapter is still applicable for special cases,

for which these kinds of algorithms fail, or to review and correct the output of such

algorithms.

In the chapters 2.4 and 4.4 the concept of distance constraints was already

introduced. Depending on whether the process is based on homonuclear or

heteronuclear spectra, either the HomoScope or PolyScope tool window is used. As

usual the tools can be opened by selecting a spectrum in the spectrum pane of the

Explorer and executing the corresponding command from the context menu.

The same concepts apply to both versions of the process (homo- and heteronuclear):

all spins identified during backbone and sidechain assignment are immediately

visible as cross-peaks, since they can be inferred by the pathway simulation

introduced in chapter 4.3.1. The remaining intensities of the spectrum, which have

not yet been assigned, are thus expected to be the interesting distance constraints

(i.e. the arbitrary inter-nuclear relations representing structural information).

The following example is a continuation of the homonuclear assignment shown in the

last chapter, this time showing spectra from the CRT36 project [Ellgaard et al. 2002].

A 2D [1H,1H]-NOESY spectrum is selected in the spectrum pane of the Explorer. The

command Open HomoScope is then executed from the context menu. The window

opens, displaying all cross-peaks calculated by peak inference. During constraint

gathering no new spins are created, but existing spins are linked together. The user
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places the cursor on the intensity peaks not already picked. The menu

Picking/Propose Peak opens a dialog box displaying all existing spins having a

position corresponding to the cursor position (see Figure 46). The spins are selected

using Eq. 6 (see chapter 4.2.1) and displayed in descending order of the agreement

(i.e. the most likely candidates are on top of the list). The tolerance value can be set

using menu Picking/Set Verti. Tolerance (which is valid for both dimensions since

they have equal atom types).

Figure 46: Selecting a spin pair corresponding to a cursor position

The dialog shown in the figure gives two alternative spins to choose from for the

vertical dimension. The two spins with id numbers 31315 and 1658 were selected by

the user and are in the following connected by a spin link, which is then displayed as

a cross-peak. The user can recognize from the labels whether the cross-peaks

connect intra- or inter-residual spins. Usually only inter-residual spins are connected

by links, since the intra-residuals can be inferred by pathway simulation.

If there are no more unpicked intensity peaks left within the interesting areas of the

spectrum, the process is finished. At this point a peaklist can be generated and either

be saved to a file (using menu File/Export/Peaklist) or directly transferred to
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MonoScope for peak volume determination (using File/Export/Peaklist to

MonoScope, see next chapter).

In the 3D case the analysis works similar. The distance contraints are identified using

the PolyScope tool instead. The 13C-ed. [1H,1H]-NOESY has probably to be rotated to

present the 1H/13C correlation in the plane and the NOESY dimension in the strip.

Figure 47: Common dialog to change the rotation of the dimensions

Up to this point all spectra were directly opened, assuming that the spectrum is

displayed using the dimension order specified by its spectrum type. The spectrum is

as usual selected in the spectrum pane of the Explorer. The command Open

PolyScope (rotated) is then executed from the context menu. The dialog of Figure 47

appears. The identification of NOESY peaks then works in a similar way described in

the homonuclear example (using the menu command Strips/Propose Spin). Figure

48 shows a 13C-ed. [1H,1H]-NOESY of the FimD [Bettendorff, Pascal: unpublished

data] project. The strips display all spins of the spin system selected in the plane.

The cursor is then positioned on an intensity peak within the strip. If the command

Propose Spin is executed, CARA presents a list of all spins having chemical shift

positions corresponding to the cursor position (sorted in descending order of the

agreement calculated with Eq. 6).
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Figure 48: Identifying peaks in a 13C-ed. [1H,1H]-NOESY using PolyScope

The user can select a spin from this list, which is then displayed as a cross-peak in

the strip. The selection of the correct spin is difficult if there are many spins at the

same chemical shift. Often the decision is only possible during structure calculation.

Algorithms like CANDID [Herrmann et al. 2002b] are able to handle these ambiguous

distance constraints and their output can again be used in CARA (so the user does

no longer have to guess about the assignments).

+#/ !��4 �5 ��� � ��$����� �
����


In this section we give a short overview on how to use CARA for peak volume

determination. We take the D2O exchange of Pheromone binding protein from

Bombyx mori at pH 4.5 as an example [Lee et al. 2002]. The same procedure can be

applied to NOESY peak volume determination with the difference of having only one

spectrum instead of a series of spectra.

The spectra of the exchange series can be imported to the Project with the file

selector dialog in one single step if they are all located in the same directory. Next,

the first spectrum of the series is opened with MonoScope and the corresponding

peaklist is imported. Figure 49 shows how the spectra are then added to the ordered

batch list of the peaklist. Because the order of the spectra corresponds to the sort
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order of their names, this can also be done with one mouse click (menu item Add All

Spectra).

Figure 49: Spectrum Batch List

Figure 50: MonoScope with peaklist, spectrum, slices and overview
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The first spectrum in the batch list is used as a reference to load the peaklist to be

integrated. Figure 50 shows the tool window, where all peaks can be verified within

all spectra of the batch list. The program offers efficient commands to quickly

navigate to the interesting parts of a spectrum. It is also possible to move or pick

additional peaks, if necessary. Peak positions can be individually adapted to each

spectrum using the Move Peak Alias command from the Peaks menu. This feature

allows the program to follow the trace of a peak along all spectra of the batch list.

Figure 51: Adjusting model parameters of a selected peak. The model is plotted

on top of the original slices

The user interactively tunes the model parameters (line width, Gauss/Lorentz

balance, peak tolerance, etc.) by selecting representative peaks and moving the

sliders as shown in Figure 51. Every change immediately affects the displayed model

curve. The HN dimension in the figure has already been adjusted by the user. The N

dimension still needs attention. When the parameters are suitably adjusted, the

volume determination can be started using the Integrator menu (see Figure 52).

It is possible to integrate a single spectrum or alternatively the whole batch list in one

pass. The volume determination of the batch list of Pheromone Binding Protein (107
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spectra) took less than 10 seconds on a laptop (Windows XP, 2.4 GHz). The results

of the volume determination are immediately visible in the peaklist (Vol. column).

Figure 52: The Integrator menu and the integrated peaklist (columns Vol. and

Amp.)

The user can display the exchange curve along the spectra of the batch list for each

peak. Irregularities are thus easily recognized and assessed to the originating

spectrum. Figure 53 shows spectrum 1 and the overlapping peaks 134, 94 and 110.

Additionally he exchange curve of peak 134 is presented. The peak volume assigned

to spectrum 50 seems to be irregular (information for each point of the curve can be

indicated by use of a so called ToolTip). The user will visit the corresponding

spectrum, do the appropriate adjustments and then restart the volume determination.

Because volume determination nearly happens in real-time, the user can apply an

incremental and iterative optimization approach.
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Figure 53: Three overlapping peaks and the exchange curve shown for one of

them

The user can assess the adequacy of the model parameters and the quality of the

volume determination by comparing the backcalculated and difference spectrum with

the original one (Figure 54). Eq. 14 shows how to backcalculate a spectrum using the

available data (model, volumes and positions). The spectra are calculated in real-

time and immediately reflect changes to the database.

  

Figure 54: The backcalculated spectrum (left) corresponding to Figure 53 and

the difference spectrum (right)
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In the right part of Figure 54 the peaks have nearly disappeared, i.e. there is little

intensity remaining. In case a peak was covered before or accidentally not picked, it

would now appear in the difference spectrum. The user could pick the peak,

reintegrate and immediately see the effect in the spectrum. This incremental and

iterative process would continue until the user was satisfied by the result.

+#0 !* ���
�

As part of the processing the phase of an NMR spectrum has to be adjusted to get

pure absorptive signals (as described in chapter 2.2). Most common processing

programs are controlled by a command language (i.e. using a terminal screen) and

cannot graphically present spectra by themselves. If the user wants to visually

assess the effect of the parameter settings, she has to make use of other programs

offering this capability. CARA has a dedicated tool window, which allows the user to

load all real and imaginary parts of a spectrum and to interactively adjust the phase

angles along all dimensions, having immediate feedback of the adjustments.

The corresponding tool in CARA is called Phaser and can be accessed by menu

Tools/Phase Spectrum from within the CARA Explorer. After executing the menu

item, the user has to select a spectrum file from the file system representing the real

part. If done so the Phaser opens showing the selected spectrum. The user has then

to explicitly open the imaginary part spectra, one for each dimension and

corresponding to the real part spectrum. The File menu contains tree items Open

Imag. Dim X, Y and Z by which the imaginary spectrum files can be loaded. For a 2D

spectrum only X and Y are enabled and the user has thus to select two imaginary

spectrum files, so she has finally loaded three spectra (rr, ir and ri).

Figure 55 shows Phaser in action (the spectrum comes from the CRT100 project

[Bettendorff, Pascal: unpublished data]). The user has already adjusted the pivot

point (menu Slices/Set Pivot). This is the position in the spectrum where the linear

phase Phi 1 has no influence (visualized by the darker of the two cursor lines).
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Figure 55: Using Phaser with a 2D spectrum

The phases can be changed in different ways, either by dragging the mouse in the

lower right pane (the control panel, where X direction corresponds to Phi 0 and Y to

Phi 1, and each can be separately or both simultaneously changed), by pressing the

cursor keys (horizontal for Phi 0 and vertical for Phi 1) or by explicitly entering the

numbers in a dialog box (menu Slices/Set Phase). In all cases the effect of the new

angles is simultaneously calculated and the spectrum display accordingly changed

(the slice display is even animated during the mouse drag to ease visual

optimization). There is only one dimension active at any time. The control panel

displays the active dimension together with its current phase and pivot values. The

active dimension is changed by either clicking into a slice pane or by the menu item

Slices/Use Dim. X, Y or Z.  The user would usually select a prominent peak in one

region of the spectrum, use it as the pivot and adjust Phi 0 for all dimensions. She

would then select another prominent peak and compare the two regarding Phi 0 (by

optionally superimposing their slices). If necessary the second peak can be corrected

in regard of Phi 1. This procedure is usually repeated with different peaks in different

areas of the spectrum, until all of them look evenly absorptive. The phase angles can

then be read out to adjust the processing software in use.
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Scientists spend a major part of their time writing reports and papers. An assignment

has usually to be documented and presented on the basis of the used spectra. It is

therefore essential that a software package offers an efficient way to not only render

information interactively to screen, but also to a printable form. Since a printed

document obeys other formatting requirements than a screen display, it is not

appropriate to just print out the contents of the tool windows.

CARA follows a WYSIWYG (what you see is what you get) approach in that it allows

to render the contents of a tool window to a generic print preview window, where the

user can adjust the look of the presentation by various interactive parameters. The

user would work as usual with one of the tool windows and then execute the menu

item File/Print Preview as soon as she has zoomed into the area to be presented.

The window of Figure 56 appears (the spectra come from the GroES project [Fiaux et

al. 2002]).

Figure 56: Print Preview window showing HN/N cross-peaks
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There is a menu bar and also a context menu available. The user adjusts the page

size and orientation using the View menu. The print output is cut at the borders of

this virtual page. Each change of any of the fifty parameters is immediately visible.

Some features (such as the placement and resolution of the scale numbers) are

automatically adjusted by the software for convenience. Parameter settings can be

saved to or loaded from configuration files using the menu commands File/Save

Settings and File/Load Settings. If the user is satisfied with the look she can send the

page to a printer or save it to a file using the menu File/Print. The printed page looks

exactly like the one displayed on screen (provided the printer can display colors). It

seems appropriate for casual presentations to directly use the printed page. For

paper publications instead, it usually makes sense to enhance the drawings by use of

dedicated picture editing packages (which are able to load the postscript output of

CARA).

Figure 57: Print out of an assigned HNCA strip fragment
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Each primary CARA object is extensible on the fly by new attributes by the user. The

Attribute Definitions category of the CARA Explorer lists all object classes, which can

be extended (Figure 58). The attributes pane on the right lists all attributes of the

selected object class. The user executes the New Attribute command of the context

menu of the pane, which opens a dialog box, where an attribute name, one of the

supported data types and an optional description of the attribute can be entered. The

attribute definitions are then part of the repository and immediately applicable.

Figure 58: Extending CARA object classes with new attributes

As soon as attributes are defined, the user has the option to select an arbitrary object

(e.g. a spectrum within the spectrum pane as shown in Figure 35) and execute the

menu command Edit Attributes. The attributes of most objects are edited using the

dialog shown in Figure 59. The repository and project objects are privileged in that

their attributes are directly editable from within a pane of the Explorer (see Figure

28). The height of the fields can be adjusted using the mouse.
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Figure 59: Dialog for editing dynamic attributes

Dynamic attributes are a nice way for the user to interact with an algorithm

implemented by a CARA script (see next chapter). A script is able to read and write

the same attributes that the user can edit in the attributes dialog. An algorithm could

calculate something and store the results as attributes where the user can inspect

them. On the other hand the user could control the parameters of an algorithm by

presetting certain attributes. Since the user only can see the attributes declared

within the definition pane, an algorithm could easily hide private attributes from the

user, but storing them anyway as a part of the repository. The next chapter shows

how even structured attributes (i.e. like a record in a database) can be created and

accessed by scripting. A repository can be extended this way by custom objects.

+#�� �� ��- ��
� ��
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CARA has a built in scripting language. It is useful to implement custom algorithms,

data structures, input/output formats or user interfaces. Scripting in CARA is based

on the programming language Lua [Ierusalimschy et al. 2003], which is for several

reasons regarded by the author as being best suited for this purpose. Technically

Lua is the combination of a very small and extremely efficient virtual machine kernel

with a lean, easily learnable programming language, which has similarities to the

Pascal family of programming languages. The training period to become productive

is usually quite short (about one day) for a user even with no computer science
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background. The execution performance of the resulting scripts is very high

[Computer Language Shootout, http://dada.perl.it/shootout/craps.html]. This gives

Lua a strong advantage compared to other scripting technologies like Perl, Python or

Tcl (which are more widely known instead and used by other NMR software

packages). Lua itself is completely application neutral and only equipped with a

minimal but robust set of standard library functions. The full benefit of Lua is realized

if it is embedded in a host program like CARA.

Figure 60: The terminal pane of the CARA explorer

CARA/Lua consists of a full fledged programming environment with terminal, editors

and persistent module management (Figure 60). Most objects managed by CARA

can be accessed within the script by means of a large application programming

interface (API). The API consists of about fifty object types and five hundred

procedures which are documented in a separate programmers manual [Keller 2003].

The execution and development of scripts is straight forward. The user has the

possibility to either directly input and execute Lua statements from within the terminal

(as shown in Figure 60), or she can create a new named script, which can then be

edited using a dedicated scripting editor (Figure 61). The script becomes part of the

repository for later reuse. Even the deployment of scripts by means of the template

concept (described in chapter 6.2) is possible, so the user doesn't have to write all

functions from scratch, but can base its new algorithms on a library loaded from a

template.

Let's assume the user has created a new script called drawSpec (executing the

command New from the context menu of the script list in the terminal pane). As soon
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as a unique name is entered, the script editor opens. The user can then directly start

to type the script. When this is done, the menu commands Script/Check Syntax and

Script/Execute Script are executed to check and run the script. Syntax errors are

written to the status line of the editor and also to the terminal pane. The script

presented in Figure 61 only consists of twelve lines of code. Nearly all lines are calls

to the CARA API. The first line opens a spectrum from the repository. Then a plane is

cut out of a spectrum and stored in a buffer, before changing its resolution to 50

samples in each dimension. A contour view is then created and configured. Finally a

canvas window is opened and everything is painted into it. The right part of the figure

shows what happens, if this script is executed.

 

Figure 61: A short script to draw a part of a (left) spectrum and its output (right)

Scripting in CARA has many powerful features. As already mentioned there are

robust standard libraries (with functions for string handling, mathematics and many

other things) and access to all CARA objects. Additionally CARA/Lua offers a

comprehensive user interface library to build interactive applications, an object

database to create complex, persistent data structures, and a library to easily parse

and save XML [Holzner 2001] files.

Algorithm 3: Executing a pathway simulation
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Algorithm 3 shows again how to access the CARA API, this time to instantiate an

NmrExperiment (see chapter 4.3) and to execute a pathway simulation for an Alanine

in a HNCA spectrum. One of the resulting paths is printed using a loop statement.

Algorithm 4: Creating a button window with an event handler
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In Algorithm 4 a vertical box is created and filled with a label and a button (the

resulting window is also shown). The Clicked event of the button is then associated

with a handler function printing a text to the terminal as soon the button is clicked.

Algorithm 5: Creating and using persistent record objects
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Algorithm 5 shows how a script can create a persistent record object. It is uniquely

identified by an ordinal number automatically assigned by CARA. A reference to this

record is then stored in the dynamic attribute "myRecord" of the Repository object by

the script. The record can have attributes by itself. The example shows how an

attribute can be indexed by either a number or a string. Records can even be nested,

i.e. a reference to a record can be stored in an attribute of another record (as done

with the attribute "subRecord").

The last chapter shows how a user can present and edit dynamic attributes using the

attributes dialog. The last example showes how the algorithm can access the

"Author" and "Creation Date" attributes of the repository. If the number attribute

"myRecord" was also declared in the repository object type (see Figure 58), the user

would see it containing record reference and an ordinal number. She could then

change or delete it and thus interact with the algorithm. The user can declare the

needed attributes in the definition pane of the Exporer (see Figure 58) and has full

control about which attributes are visible in the dialog (see Figure 59) or only

accessible by scripts.





��'

 2000-2005 Rochus Keller

. �* ��	
"
��- �� ��� � ����� ��

.#� !������

An NMR spectrometer records FID signals in the time domain. The signals originate

from a probe head and pass an analog/digital conversion. The converted digital

signal is furthermore processed and turned into a frequency domain spectrum, which

is then analyzed using dedicated software like CARA. In practice several spectrum

file formats have been established, some of them more than twenty years ago. They

were mostly developed by scientists as a supposedly neglected side effect of some

scientific projects, sometimes without taking into account the respective

achievements of computer science. The projects finished, but the spectrum file

formats remained to stay.

The following chapters describe a spectrum file format which meets all important

requirements; it is efficient and feasible to handle and to integrate into a software

package like CARA.

.#� "�& � ���� �
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A spectrum file formats has to fulfill a bunch of requirements. Besides the

fundamental requirement of being able to carry multidimensional spectrum data,

there are also important ergonomic and technical requirements, often neglected by

the available formats.

NMR spectra are in fact valuable assets of an enterprise or a scientific group (even if

they are not always treated accordingly). Their creation needs a lot of time, money

and know-how, and they are the foundation of long going analysis projects and the

proof of scientific conclusions. It is therefore worthwhile to put them under

configuration control, together with all other relevant project documents. An NMR

spectrum thus becomes one of several formal products documenting the results of a

project. In a modern scientific environment, all documents should be kept in a
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document management system (DMS), taking care of access control, version

management, traceability and archiving.

All DMS can handle configuration units consisting of a single file. Some can combine

more than one files into a compound document, which needs additional configuration

effort by the user. To be compatible with all DMS, an NMR spectrum should consist

of a single file with minimum size (or at least be compressible).

In earlier times, when no dedicated editors were available, users depended on the

possibility to edit spectrum parameter files with a common text editor. That's why

many of the available spectrum formats divide a spectrum into different parameter

and data files (which complicates spectrum file handling). Some programs even

stipulate a naming scheme for the files and the directories containing them. The

parameters are normally kept in human readable text files, whereas most data file

formats are binary. With today's tools it shouldn't be necessary for a user anymore to

manually edit spectrum files. The format should rather impede manual changes,

because they hold dangers of corrupting the spectrum. Today it also seems

unacceptable to dictate uncommon naming schemes or directory structures to the

users.

A spectrum file format should be directly readable by a software in a efficient way,

without being forced to initially copy or decode the whole file. The binary format

should also be easily interpretable to reduce the risk of programming errors. For

historical or implementation reasons of their original host applications, many

spectrum formats still use complex compression or data layout schemes (e.g. sub-

matrices and separation of mantissa and exponent). On today's computers with their

high processing power and large memory sizes, these schemes are not expected to

be necessary anymore, even more if the software makes use of modern operating

system features like memory mapped files.

A scientific group usually works with different operating systems and processor

architectures at the same time. It happens that a spectrum file resides on a server

and is used concurrently by a program running on Windows, Linux and Solaris.

Therefore the spectrum file formats must be completely platform independent (i.e.

indifferent to byte ordering). For performance reasons, the number formats of the

sample values must be of constant size over the whole spectrum (i.e. constant block

format). One could be tempted to meet these requirements by even coding the
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sample values in human readable ASCII numbers, but the size overhead would be

tremendous.

For the purpose of archiving and internet distribution it is advantageous if spectrum

formats are compressible (i.e. the file size is reducible by algorithms like ZIP). Binary

formats tend to produce very stochastic (i.e. uncompressible) byte streams (in

contrast to text formats), e.g. a 16 bit EASY and a 32 bit Bruker spectrum file can

only be compressed by 10% maximally (e.g. using the program WinZIP). The next

chapters show, that a compression factor of at least 50% is achievable (without using

lossy coding techniques).

Finally the spectrum file format should - even uncompressed - not take up more

storage space than needed for the information it contains. Many formats use 32 bit

numbers (e.g. Bruker), although the common NMR spectrometers produce numbers

with 12 to 18 bits of information only. It is thus difficult to comprehend, why the EASY

spectrum format does a compression of 32 bit to 16 bit numbers. The next chapters

show, that uncompressed 16 bit numbers are adequate for most cases, and

compression is only necessary if 8 bit numbers are used.
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Figure 62 shows a conceptual model of the signal flow from the probe head of the

NMR spectrometer to the spectrum file. The RF signal from the probe head as first to

be demodulated and amplified. Due to the Nyquist theorem all frequencies above fs/2

have to be removed (where fs is the sampling frequency of the analog/digital

converter) by a low-pass filter to avoid (uncontrolled) aliasing. Most NMR

spectrometers make use of oversampling, so the slope of low-pass filter doesn't have

to be very steep, which reduces phase distortions and self-oscillation of the filter. Due

to oversampling, the digitized signal has a much higher sampling rate than required.

The signal is thus reconstructed by a digital FIR filter (which doesn't suffer from the

restrictions of an analog filter) and then resampled according to fs/2. The filter can be

tuned by the spectroscopist to control the amount of aliased frequencies which

should be visible in the spectrum. After reconstruction the digital time domain signals

are further processed and converted to the frequency domain (as described in
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chapter 2.2). The spectrum is then coded (sometimes using data compression

techniques) to conform the rules of the spectrum file format.

Analog
Low-Pass-Filter

Analog/Digital
Converter

Digital
Reconstruction

Filter

Processing and
FFT

Compressor
and Coder

Time Domain Signal
from Probe Head

Frequency Domain
Spectrum File

Receiver
Amplifier

Figure 62: Conceptual signal flow from probe head to spectrum file

All NMR spectrometers known to the author make use of a 16 bit analog/digital

converter. The resulting digitized signal thus has a maximum information content of

16 bits. This amount is further reduced by three effects:

1. The receiver amplifier has a limited signal to noise ratio, which limits the useable

amplitude range already within the analog part of the signal flow.

2. The quantization of the analog signal introduces a quantization noise inversely

proportional to the resolution.

3. In practice only a part of the available amplitude range of the converter is used.

The spectroscopists tend to leave enough headroom to avoid clipping. The more

conservative the amplifier gain is set, the more bits of the converter are wasted

and the higher is the amount of quantization noise.

So the effective information content of the digitized signal is clearly lower than 16 bits

in practice. There are several ways to improve this. Oversampling can increase the

information content by a few bits. Another way would be the application of noise-

shaping techniques to reduce the quantization noise (not done in current NMR

spectrometers). But these are only slight improvements, so the signal to noise ratio

and the resolution of the analog/digital converter are still of higher significance. This

means that even if the calculations of the following processing steps are done with 32

bit floating point precision, the effective information content will remain around 16

bits. There is obviously no need to store sample values with a 32 bits precision in the

spectrum file.
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As shown in the next chapter the precision of the spectrum files can even be reduced

to a range of 6 to 9 bits per sample in practice without losing important information.

Additional reduction is possible if a compression scheme is applied. Data

compression is either lossy or loss-less. A loss-less compression scheme could for

example make a statistical analysis of the digital signal and assign the most frequent

amplitude values to the shortest code words (as done e.g. in Huffmann or ZIP

compression). This doesn't work well for noise-like data sets. A lossy compression

scheme can be more rigorous, because it only allows an approximate and not a

precise reconstruction of the original signal. A naive approach could for example

simply reduce the number of bits per sample value (e.g. from 16 to 8 bits), which

would regularly increase the quantization error over the whole amplitude range. In

practice this scheme is optimized by choosing an error distribution taking into

account the characteristics of the signal. In XEASY [Bartels et al. 1995] (and also in

CARA) a logarithmic compression scheme (and thus error distribution) is used.

In the next chapter the amplitude distribution of typical spectra is studied to find an

optimal distribution.
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NMR spectra tend to have a very similar amplitude distribution, independent of the

experiment type or other parameters (e.g. number of samples). Each of the following

figures shows histograms of different spectra. All histograms are normalized to y=1.0

(vertical) and show the same amplitude range 0..1'500 along the x axis (horizontal).

Only positive amplitudes are shown (Amax is the maximum positive amplitude found in

each spectrum). The spectra were independently measured by different people as

part of different projects using different instruments over two years.
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Figure 63: Detail of normalized Histogram A=0..1'500, GroES Trosy-HSQC,

Amax=281'778 (left), GroES 15N-ed. [1H,1H]-NOESY, Amax=1'236'186 (right)

   

Figure 64: Detail of normalized Histogram A=0..1'500, GroES HNCA,

Amax=819'611 (left), GroES HNCACB, Amax =812'413 (right)
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Figure 65: Detail of normalized Histogram A=0..1'500, FimD HNCA,

Amax=1'511'705 (left), FimD HNCACB, Amax =51'998 (right)

   

Figure 66: Detail of normalized Histogram A=0..1'500, FimD 15N-ed. [1H,1H]-

NOESY, Amax=1'614'542 (left), FimD 13Caro-NOESY, Amax=1'835'372 (right)

It can immediately be seen that all histograms show very similar gaussian

distributions (only the positive part has been shown in the figures). The deviation of

all distributions is around 250, even if the maximal amplitudes of the different spectra

are completely uncorrelated. A gaussian distribution corresponds to a white noise,

i.e. a noise with a linear frequency distribution. The noise is probably produced by the

receiver amplifier and thus independent of the experiment parameters.

The histograms substantiate that the major part of the spectrum contains noise only.

But even the remaining energy is not useful in every case. In HSQC, HNCA and

HNCACB experiments the maximum amplitude largely corresponds to the useful

amplitude range of the detected signals. In contrast to that in the NOESY
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experiments the amplitude range of the useful signals is usually only one percent of

the maximum amplitude (due to water and diagonal signals), thus wasting 99% of the

available amplitude resolution. If such a spectrum was coded using a 16 bit word per

sample value (only considering positive values), only the first 9 bits of each word

would contain useful information (or even less because at least 2 to 3 bits contain

noise only). For these cases it would completely make sense to clip the unused

amplitude range and dedicate the available resolution to only useful information.
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CARA saves each spectrum in a single file together with all meta information. The

format supports different resolutions and coding schemes. Sample values can be

stored with either 32, 16 or 8 bit precision. The meta information is divided into

elements with fixed and variable sizes (i.e. a text element usually has a variable

size). All elements with fixed sizes together constitute the file header, followed by the

spectrum data (i.e. intensity matrix) and in the end the elements with variable sizes.

All data are stored in a platform independent binary format (using big-endian byte

ordering). The intensity matrix is serialized along dimension 1, 2, ... rendering value

streams of the form s1,1, ... , sm,1, s1,2, ... , sn,2, ... (where si,j are the sample values and

m, n, ... are the number of samples along the dimensions 1, 2, ...). There is no notion

of sub-matrices as e.g. in XEASY.

The following table gives a formal definition of the CARA spectrum file format with all

its currently supported variations. The data type uint represents an unsigned integer,

whereas float represents a 32 bit IEEE 754 floating point value (i.e. the native C/C++

float type), both stored with big-endian byte ordering. The type string is a variable

length array of 8bit ANSI characters terminated by a zero byte (value 0).

Table 6: Field list of a CARA spectrum file

Field Type #Bytes Description
cookie byte array 8 Constant value "caraspec" to recognize the

spectrum type
version uint 4 Constant value "3" (CARA 1.0)
offset1 uint 4 Byte offset to intensity matrix
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Field Type #Bytes Description
offset2 uint 4 Byte offset to variable size meta information

block (starting with "name")
date1 uint 4 Creation date

(number of days since Sep. 14. 1752)
time1 uint 4 Creation time

(milliseconds since midnight)
date2 uint 4 Change date

(number of days since Sep. 14. 1752)
time2 uint 4 Change time

(milliseconds since midnight)
posMax float 4 Positive amplitude maximum (clipped)
negMax float 4 Negative amplitude maximum (clipped)

posNoise float 4 Positive estimated noise level
negNoise float 4 Negative estimated noise level
posPeak float 4 Positive amplitude maximum (unclipped)
negPeak float 4 Negative amplitude maximum (unclipped)
format byte 1 Code representing the format of the sample

values:
0...symmetric 8bit log-compressed
1...adaptive 8bit uncompressed
2...adaptive 16bit uncompressed
3...floating point IEEE 32bit uncompressed
4...symmetric 8bit gauss-compressed
5...adaptive 8bit log-compressed

dimCount byte 1 Number of dimensions of the spectrum
per dimension

atom byte 1 Atom type code (ordinal number according
to periodic system): 1...H, 2...He, 3...Li,
4...Be, 5...B, 6...C, 7...N, 8...O, ....

ppm1 float 4 PPM value of sample index 1
ppmN float 4 PPM value of sample index N
count uint 4 Sample count N of dimension
fold byte 1 Code representing the folding along this

dimension:
0...unfolded
1...translated (e.g. RSH)
2...mirrored (e.g. TPPI)

MHz float 4 Spectrometer frequency along the
dimension in MHz
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Field Type #Bytes Description
data byte array * Intensity matrix (type and #bytes dependent

on value of field format)
start of variable size block

name string * Name of spectrum
specType string * Name of spectrum type

desc string * Description of spectrum
author string * Authors of spectrum
com string * Company or institution holding copy right

per dimension
label string * Name of dimension

dimDesc string * Description of dimension
per attribute

attrName string * Name of attribute
attrType string * Attribute type (e.g. "String", "Long", etc.)
attrValue string * Value of attribute as string (printf format)

All uncompressed, integer-based values are calculated according to Eq. 15, where p

is the original value of the intensity matrix, vmax is the maximum value of the code

word (255 for 8 bits and 65'535 for 16 bits), ppos is the positive and pneg the negative

maximum amplitude (corresponding to posMax and negMax in Table 6). p is always

clipped to the range given by pneg and ppos. The resulting value v is then written to the

file.

Eq. 15

negpos

maxneg )(

pp

vpp
v

−
⋅−

=

The coding is either symmetric or adaptive. The symmetric variation dedicates half of

the resolution of the code word to the positive and the other half to the negative

amplitude range. The adaptive variation distributes the resolution proportional to the

width of the positive and negative amplitude range. Eq. 16 is used to calculate the

code value representing the zero amplitude.
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Eq. 16
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CARA can apply a logarithmic compression scheme, which takes into account the

amplitude distribution of a typical NMR spectrum (i.e. lower amplitudes are better

resolved than higher ones). The positive and negative amplitude ranges are

separately treated. Eq. 17 shows the concept, where pmax either corresponds to ppos

or pneg and vpart is either vzero - 1 or vmax - vzero. For p < 1 or p > -1 the value v

becomes 0. The positive amplitude range is mapped to v = 1..vzero - 1, whereas the

negative amplitude range is mapped to v = vzero...vmax. Again p is clipped to the range

given by pneg and ppos.

Eq. 17

|)ln(|
|)ln(|

max
part p

p
vv =

The gaussian compression scheme tried to further adapt the available resolution to

the histogram of a typical spectrum, but didn't render significantly better results than

logarithmic compression. Eq. 17 is even more effective and easier to implement than

the scheme used by XEASY [Bartels et al. 1995] (which has a larger coding error,

less resolution and problems with high amplitude values). A decoder can be

implemented very efficiently using a lookup table.

All schemes implemented in CARA allow the user to use other values for pneg and

ppos than the ones found in the spectrum, i.e. to clip the stored amplitudes to a certain

range. This makes it possible to dedicate the available resolution to the interesting

amplitude ranges (e.g. clipping away the water line in a NOESY or the negative side

in a HSQC). The use of the available storage and the runtime access to the data

become more efficient.

The adaptive 16 bit uncompressed scheme is suited to be compressed by loss-less

algorithms like ZIP, rendering compression rates of about 50%. The spectrum files

thus have the same size like the 8 bit formats, but have to be decompressed before

they can be used. The compression rate is possible, because the sample values are
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stored as integers instead of floating point values, and - due to the typical amplitude

distribution - the probability is very high that one byte per sample is zero.
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This chapter summarizes the achievements of this PhD project with focus on the

personal intellectual contributions of the author (explicitly required by the PhD

examiners).

The achievements of this PhD and - at the same time - the intellectual contributions

of the author are fully described by this PhD thesis, especially by the chapters 3, 4, 5,

6, 7 and 9, as well as appendices B, C and D.

The conceptual model introduced in chapter 4 is a direct result of the analysis,

prototyping and evaluation cycles conducted by the author. It partly improves on

ideas by others, but mostly introduces genuine ideas by the author.

Especially the following are genuine ideas by the author (a detailed description can

be found in chapter 4):

1. Replacement of the concept of peaks (predominant for the last twenty years) by

the more flexible concept of Spins, SpinAlias, SpinLabels and SpinSystems. Use

of smart SpinLabels to tag Spins projected from potentially neighbouring

SpinSystems.

2. More efficient way of spectrum folding and folded Spins representation.

3. Modeling molecules using generic meta classes ResidueType, Atom and

AtomGroup, thus not predetermining the model to protein applications.

4. Representation of pseudo atoms by AtomGroups, which can be used as generic

substitute for Atoms, before stereo-specific assignment is known.

5. Directly associating statistic information with Atom and Residue. The statistics is

not predetermined to 13C. Residue level statistics override Atom level statistics.

6. Categorization of SpinSystems and ResidueTypes by SystemTypes, thus allowing

sequence mapping using SystemType correspondence (useful for homonuclear

assignment described in [Wüthrich 1986]).

7. New variations of algorithms for strip matching and sequence mapping. Modeling

fragments by explicit chains of SpinSystems.
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8. Modeling sequence-specific assignment by connecting the SpinSystems to

Residues and implicitly the SpinLabels to the Atoms of the ResidueType by string

matching.

9. Modeling NOE constraints using SpinLinks and LinkAliasses, as an extension to

Spins and SpinSystems (thus replacing peak lists for constraint management).

10. Modeling NMR experiments as either a sequence of generic selection operators,

or as sets of expected labels per dimension. Meta tagging NMR spectra with a

SpectrumType (without predetermination of supported spectra).

11. Magnetization transfer pathway simulation and peak inference.

12. Specification of typical NMR experiments using the new SpectrumType formalism.

13. Robust, very efficient volume determination algorithm using a linear equation

system and a uniform peak model (independent of spectrum resolution). Quality

assessment by calculating the difference of real spectrum and a back-calculated

spectrum.

These ideas were a necessary precondition to satisfy the requirements and

recommendations formulated in chapters 1.1 and 3.7, and thus to achieve a scientific

progress.

Other algorithms have been described to match strips to fragments [Bartels et al.

1995], to map fragments to the amino acid sequence [Güntert et al. 2000], or to

determine peak volume [Glaser, R., www.molebio.uni-jena.de/~rwg/ spscan/]. The

strip matching algorithm introduced in this thesis differs from the others by use of

smart spin labels, fuzzy comparison operators (based on simple triangle functions)

and weighted fitness values. The fragment mapping algorithm introduced in this

thesis differs from others by use of fuzzy operators (based on simple triangle

functions), weighted fitness values and integral use of generic statistic values

associated with freely designable molecule types (thus not restricted to 13C or amino

acids). The volume determination algorithm introduced in this thesis differs from

others by not directly depending on spectrum quality or resolution (thus avoiding

problematic intensity decomposition). The volume is calculated as a superposition of

uniform, mathematical peak models instead. The real spectrum is only used in a

second step for quality assessment by comparing with the back-calculated spectrum.
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The conceptual model has been developed in the context of protein liquid-state NMR.

Recent applications in other groups have shown that the model (and the prototype) is

generalizable enough to also being reused for other NMR experiments originally not

analyzed by the author, or other application domains (like solid-state NMR) or

molecule types (like nucleic acids or combinations of amino and nucleic acid chains).

The model has been evaluated and refined along a series of prototype

implementations. All prototypes have been implemented as a proof of concept (and

as such a side effect of the PhD) by the author himself. The following list gives an

overview of the prototypes and implementation years:

1. Spectroscope I: 2000

2. Spectroscope II: 2001

3. SpinBase: 2001

4. Spectroscope III: 2001

5. Backbone: 2001 - 2002

6. Compare: 2001

7. Neasy: 2002

8. Backbone2: 2002

9. Integrator: 2002

10. Sidechain: 2002-2003

11. Slicer: 2002

12. Compiler: 2002

13. Aida/Cara 1.0: 2003

14. Cara > 1.0: since 2004

All prototypes natively run on all major platforms. The implementation details (e.g.

software architecture, design and source code) are owned by the author and not part

of the PhD thesis.

The specific use case, user interface and usability designs of the prototype windows

(as described in chapters 6 and appendix C) also contain many genuine contributions

by the author. Window systems, contour plots, strips and slices have already been

used in other programs (e.g. XEASY [Bartels et al. 1995] or Sparky [Goddard et al.

2000]). The specific window layout, tailoring of use cases to program functions,

simultaneous view of different spectra, and the combination of different view types in

the same window, have been optimized by the author as part of this project over

several years, and largely affect efficiency, usability and acceptance of the program.

Especially the concepts of SynchroScope, PolyScope and SystemScope (chapter 6)

are genuine contributions of the author, not yet seen in other programs.
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SystemScope became the tool of choice for semi-automatic side-chain assignment in

many scientific groups.

Yet another genuine contribution of the author are the NMR spectrum format

described in chapter 7, and the repository XML format described in appendix B. Part

of the latter has been adopted by the forthcoming application RADAR [Herrmann et

al., unpublished].

Science is a joint effort. NMR was completely new to the author when he started his

PhD at the institute of Molecular Biology and Biophysics in the group of Prof. Kurt

Wüthrich. The group was very helpful and beared with the author when he became

acquainted with NMR. Even if the author hasn't been employed with ETH, he has

generously been given access to ETH resources and lecture courses, which was

indispensable to conduct the PhD project. The group (especially Dr. Fred

Damberger, Dr. Peter Güntert and Pascal Bettendorff) additionally supported the

project by evaluating the concepts and prototypes developed by the author, and also

by providing the author with valuable feedback and comments, allowing him to refine

his concepts and to converge the analysis and prototyping activities towards an

optimal solution. At a later stage of the project the evaluation was extended to the

groups of Prof. Konstantin Pervushin, Prof. Roland Riek and Prof. Beat Meier. These

cooperations not only provided the author with additional feedback and new insights

into NMR, but also made it possible to generalize the concepts to other working

cultures and even new application domains (e.g. solid-state NMR).

A PhD is not only science. It wouldn't have been possible to successfully complete

this PhD project without the dedicated and persistent effort of Prof. Nikolaus Amrhein

and the Biology Department of ETH.
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CARA so far has proved to be useful, making the process of spectrum analysis,

resonance assignment, constraint gathering and volume determination more efficient.

Not only a program, but a whole software infrastructure has been created, on top of

which new features can be built.

The next big thing will be the replacement of the current, hard coded scope windows

by a scope toolkit (a kind of "SuperScope"), in which only the panes or pane layers

are hard coded, and then to rebuild the current scopes out of this new toolkit, using

Lua as the glue language. Users can then either use these pre-defined scopes or

easily build their customized versions. This new concept also allows to automate

menus and the like by custom Lua code, or to save a complete application setup as

an executable Lua procedure (which then can rebuild the application state when

executed).

CARA is then ready for further experiments. The author would like to extend the

volume determination algorithm of chapter 4.5.1 to be useful as an automatic peak

picker (by minimizing the remaining intensity of the difference spectrum). Further

algorithms will be developed to automate the backbone assignment. One idea is to

calculate all significant fragment variations and validate them against the sequence

using carbon shift statistics. Alternatively one could do the same with all

combinations of fragments with length three and then apply a threshold accepting or

genetic optimization to them.

In the future CARA could establish as an application integration platform, where all

kinds of algorithms can be embedded as a plug-in. The scripting and XML features of

CARA could then be used to build graphical user interfaces for these algorithms and

to control them using asynchronous inter-process communications on the base of

XML web service technology. The core algorithms of PROSA [Güntert et al. 1992],

DYANA [Güntert et al. 1997] or RADAR [Herrmann et al., unpublished] could then be

either published as a shared library or a web service by their authors, and would no

longer depend on a command line interface. Nevertheless the development of the

different components could still be independent, allowing useful cooperations with
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even other algorithm's authors, if they adapt their programs to be compatible to this

technology.

This integration would enable a tight coupling of all processes, so one could think of

not only mapping fragments to the sequence, but already in this early step start

calculating structural conformers and checking for their convergence. If new

measuring equipment and new experiment types become available, one could think

of semi-automatic algorithms directly looking for NOESY constraints without first

assigning all individual resonances and then immediately calculating structures.

These could be looped back to validate the NOESY analysis.

Another interesting thing would be the introduction of fuzzy peaks to replace the

current concept of PPM position as scalar numbers. Each peak picking up to now is a

"hard decision" out of a noisy fact base, inherently leading to a loss of information,

which has later to be compensated for by use of tolerance ranges and agreement

functions. If the whole process chain would make use of fuzzy peaks straight

through, the convergence of the minimization algorithms could be enhanced, or the

optimization could already include the assignment process (as mentioned before to

start structure calculation before the assignment is completed).
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<class name>

<attribute1>: <type1>
<attribute2>: <type2>
...

 : <class name>

<attribute1> = <value1>
<attribute2> = <value2>
...

object definition
= class instance

class definition
= term, concept

attribute value
initializations

attribute
definitions

A

aggregation association:
class B is part of class A

B C

acquaintance association:
class C refers to class D

D

E

acquaintance association:
E and F refer to each other

F G

inheritance relation: class H
is a specialization of class G

H

X

cardinality: class X refers
to zero or one Y

Y
0..1

1...*

or class X refers to one
or more Y

*

or class X refers to zero
or more Y

budy

role name: class X refers
to class Y as role "budy" This is a

Description

a comment
concerning class Y
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CARA makes use of the XML standard [Holzner 2001] to define its repository file

format (and also some other formats or the XML objects accessible by Lua). The

capability of XML to handle hierarchic structures allows a direct mapping of the

classes introduced in chapter 4 on XML elements. The names of the elements and

attributes are chosen in favor of an optimal space/readability trade-off.

An XML based storage format has several advantages compared to a proprietary

binary or text format. Binary formats do not allow the user to see and optionally

change the repository files, as is the case with e.g. XEASY default files or Felix

project files. If these files get corrupted somehow, they usually can no longer be

opened by the original programs and there is no way to repair them. XML files on the

other hand are easier to handle than proprietary text formats, because there are

many XML parsers available as free software libraries. Other programs thus can

easily reuse CARA repository files (i.e. read and write them).

This chapter defines the repository format used by CARA. All elements and attributes

are specified using a syntax similar to XML schema (which it is understandable by

readers with XML experience).

Table 7: Repository format specification (Version 26)
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The definition of Table 8 can be additionally applied to the following elements:

repository, script, residue-type, systype, spectrum-type, project, residue, spectrum,

spinsys, spin, pair, peaklist and peak.
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Table 8: Generic fld element to store dynamic attributes

����	�����C
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A repository file is validated by CARA when loaded. Any violation of the given

specification is reported to the user, i.e. only valid repositories are accepted. CARA

also does extensive semantic testing, e.g. check for uniqueness of id numbers, range

and format conformance of values, existence of referenced objects, availability of

resources, and the like. For some cases the repository is accepted even if there were

minor semantic violations. A message is displayed in the status bar in these cases

and the user can look up the warning in the Message Log category of the Explorer

(see Figure 67).

Figure 67: A warning from repository validation
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The usability design of CARA meets the following qualities:

1. CARA is optimized for both occasional and regular users. Nearly all functions can

be accessed either from descriptive menus (context menus or menubar) or by

shortcuts (e.g. CTRL-S to save, CTRL drag to scroll, etc.) or commands (e.g. PP

to pick a peak). Menu items which are not available in a certain context are

disabled (i.e. not selectable by the user). Names and gestures are standardized

and applicable the same way in all windows.

2. CARA tries to never waste screen space. Whatever can be easily implied from

context is not explicitly printed all-over the windows (e.g. PPM scales and legends

are mostly implicit, but positions are printed in the status bar when moving the

cursor).

3. CARA does automatic screen layout. The user can change the distribution of

window space on the fly by dragging split bars.

4. CARA tries to minimize the cost for the user to execute the most frequent

functions, e.g. slice windows automatically scale to the maximum amplitude,

contour levels can be automatically calculated to optimally fit the zoom area, etc.

5. CARA is mode-less. Some programs put the user interface into certain modes

(e.g. by explicitly entering the zoom or move mode in Sparky or XEASY). The

usual interactions are then interpreted in a way depending on the current mode

(i.e. they don't always render the same behavior). In contrast to that CARA gives

immediate access to all functions by means of menu functions or shortcuts

without the necessity to take care of mode selection, which is much more efficient

for experienced users (and at last we expect all users to be experienced after a

brief learning period).



�'0

 2000-2005 Rochus Keller

6. CARA subdivides each window into different panes which can independently

have keyboard focus. The pane having the focus can be recognized by the purple

frame rectangle. Many functions and shortcut target the focus pane (e.g. the

cursor shortcuts).

7. CARA supports an incremental undo and redo feature for most functions. If a user

has executed a function by mistake or trial, she can re-establish the state before

execution by activating the undo feature. The number of undo steps is

configurable. Undone functions can again be redone.

8. Multi-dimensional information is simultaneously visible from different perspectives

(e.g. the slices at the cursor position are always visible, etc.).

9. CARA reduces the complexity of assignment by taking care of global consistency

and interlinking of information, so the user doesn't have to always keep every

possible connection in his mind, but can concentrate on a certain clear detail,

without loss of general validity.

10. CARA is large, but can be incrementally conquered by the user. After learning a

few general principles (e.g. like the zoom and navigation shortcuts), most features

are evident or at least ignorable up to the point when the user wants to use them.

There is no need to first learn the complete program, and since each major use-

case has its own environment window, there is little danger to get lost (as for

example in XEASY or even Microsoft Word, where one window incorporates each

conceivable function, and an inadvertent shortcut execution can lead to nirvana).

��6 �� ����
�3 ���� ���

The following gestures and shortcuts are generally applicable in all CARA windows.

Some functions are supported by more than one gesture to easy operability.

Function Gesture
Zoom in Press the CTRL and SHIFT keys, click the left

mouse button and draw the rectangle around the
zoom region by dragging the mouse.

Zoom in Press the CTRL and SHIFT keys and double click
the left mouse button on the center of the zoom
region. A zoom factor of two is applied along all

dimensions.
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Function Gesture
Zoom in Press the CTRL and SHIFT key and then either

the UP or LEFT cursor key to zoom in along the Y
or the X axis.

Zoom to Area If an overview pane is visible (e.g. like in the
lower left part of HomoScope), the user can click
in it to center the zoom area around the mouse

position. The user can also click and drag another
zoom area rectangle.

Zoom out Press the CTRL, SHIFT and ALT keys and
double click the left mouse button on the point

from which you want to zoom out.
Zoom out Press the CTRL and SHIFT key and then either

the DOWN or RIGHT cursor key to zoom out
along the Y or the X axis.

Scroll Press the CTRL key, click the left mouse button
on the starting position and drag the mouse to the

end position
Scroll Press the CTRL key and then one of the cursor

keys (LEFT, RIGHT, UP DOWN) to move the
spectrum 20 points per key press in that direction.
If you press ALT at the same time, the spectrum

moves by only one point.
Page Press the PAGE UP and PAGE DOWN keys to

move the view up or down by 75% of the visible
height. If you press CTRL at the same time,

PAGE UP moves the view to the left and PAGE
DOWN to the right.

Move Cursor Position the mouse and click the left mouse
button. The cursor (i.e. the yellow ruler) is then

placed at the mouse position and the PPM
coordinates are written to the status line.

Move Cursor Press one of the cursor keys (LEFT, RIGHT, UP
DOWN) to move the cursor one point per key

press in the given direction. If you press SHIFT at
the same time, the cursor moves by 20 points.
The new position is printed to the status line.

Select Peaks Press the SHIFT key, click the left mouse button
and draw the rectangle around the peaks you

want to select by dragging the mouse. During the
drag the distances are printed to the status line in
PPM and Hz. When the mouse is released, the

status line lists the selected peaks.



�2�

 2000-2005 Rochus Keller

Function Gesture
Select Peak Press the SHIFT key and click on the peak you

want to select using the left mouse button. If more
than one peak is located under the mouse

position, another one is selected with each further
click (the current one is printed to the status line).

If the ALT key is pressed instead of the SHIFT
key, the cursor is moved without unselecting the

peak (doesn't work on all Unix platforms)
Open Popup Menu Press and release the right mouse button in a

pane featuring a context menu (or the left button
while pressing command on Macintosh). The

context menu is opened at the mouse position.
On Windows there is also a special key on the

keyboard to open the context menu in the upper
left of the pane.

Set Focus If you click in a pane using the mouse (left or right
button), then the keyboard focus is automatically

transferred to this pane (indicated by a purple
frame around the pane). The focus can also be

cyclically changed by pressing the TAB key
(optionally pressing SHIFT to reverse direction).
The keyboard entries are handled by the focus

pane (i.e. the availability of shortcuts is
dependent on which pane has the focus)

Change Active Window On Windows and some Unix variations (e.g.
Linux) the top-most window can be cyclically
changed by pressing the ALT and TAB keys

(optionally pressing SHIFT to reverse direction).

)
�� �
�� �	�� � �
� �

CARA supports character commands to ease the transition from XEASY. The user

can directly type the commands from within most windows. The input is written to the

status line of the window. It behaves like a normal command line, i.e. the user can

use the backspace key to delete input characters. The space key is used to separate

parameters (if more than one is expected). If the command is recognized by CARA, it

is written out in plain text together with the expected parameters (e.g. GS for "Goto

System [Long] <enter>), or directly executed (e.g. FP for "Forward Plane"). The

command "?" prints a list of all commands supported by the window to the message

log accessible from the Explorer.
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This chapter gives a brief overview of the conceptual high-level architecture of the

CARA prototype implementation. The prototype is a proof-of-concept of the

conceptual model introduced in chapter 4 and as such a side effect of the project.

The actual design and implementation are not part of the PhD. The user interface

and operational concepts are described in chapter 6.

As a result of requirements analysis, chapter 3.7 recommends an extensible

workbench approach, providing a graphical user interface with state-of-the-art

usability features. Such a kind of application tends to be inherently complex.

Therefore, the development of CARA followed proven software engineering and

architectural concepts, even if it was intended to be just a prototype implementation.

In contrast to XEASY, which virtually is one large module, CARA follows a layer and

component based architecture with a high degree of modularity, promoting dedicated

module responsibility and component reusability. The software architecture of CARA

can essentially be seen as three layers integrated with a common object

infrastructure.

XEASY

Viewer
&

File Handling

CARA Workbench

Presentation

Logic & Abstractions

Repository O
bj

ec
t M

od
el

Figure 68: CARA layered architecture compared to XEASY

CARA follows a hierarchic Presentation Abstraction Control (PAC) architecture

[Buschmann et al. 1996]. The presentation layer consists of all interactive windows

(scopes) and visual components (e.g. for slice, intensity and contour display). The
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visual components (which are PAC agents actually) have strong resemblance to the

ones also found in Geographic Information Systems (GIS), in that multiple visual and

interaction layers with a common coordinate system (PPM in this case) are stacked

on top of each other.

The analysis objects of the conceptual model specified in chapter 4 are directly

mapped to the Logic & Abstractions layer. This layer also contains the undoable

transactions for all model updates and the magnetic pathway simulation and peak

inference engine. The Repository layer is responsible for the management of the

persistent application objects. It also contains all data format handlers and the

spectrum engine. A repository contains one or more project partitions and a common

library partition reused by all projects (see Figure 69).

Repository

Residue Types

Library

Spectrum Types

Spin System Types

Spectrum Base

Project

Residue Base

Spin System Base

Peaklist Base

Configuration
Parameter

Setup

Figure 69: Repository and persistent application objects

Finally CARA builds on top of a common object infrastructure featuring generic

services like collections, automatic memory management, command and chain of

responsibility patterns, agent infrastructure and message network and the like

([Buschmann et al. 1996] and [Gamma et al. 1995]). This infrastructure also consists

of platform abstractions and a generic scripting engine [Ierusalimschy et al. 2003].
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During the project, several prototypes have been implemented in successive order.

To reduce implementation effort, as much of the functionality as possible has been

standardized over the years and integrated into a comprehensive NMR application

framework (~150 kLOC of C++ code). Figure 70 gives an overview of the framework

as it exists for the CARA version described in chapter 6.

NMR Applications

NMR Visual Component Framework

Spectrum &
Database Engine

Lexi
Glyph & Geometry Framework

Application & Command
Framework

OS & Window
Abstraction

Figure 70: NMR application framework

The framework consists of different reusable modules. The most generic modules are

shown in the bottom right of Figure 70. Together they provide the common object

infrastructure mentioned before. Lexi is a generic, platform independent user

interface framework inspired by [Gamma et al. 1995].

The NMR application framework can be reused for different applications, one of

which is CARA (in fact versions of it have been reused for all prototype applications).

The layers of the CARA workbench described before are implemented on top of the

visual component framework and the data management modules, which take care of

the management of spectra and other persistent objects.
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